Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits


Scalable quantum computing can become a reality with error correction, provided that coherent qubits can be constructed in large arrays1,2. The key premise is that physical errors can remain both small and sufficiently uncorrelated as devices scale, so that logical error rates can be exponentially suppressed. However, impacts from cosmic rays and latent radioactivity violate these assumptions. An impinging particle can ionize the substrate and induce a burst of quasiparticles that destroys qubit coherence throughout the device. High-energy radiation has been identified as a source of error in pilot superconducting quantum devices3,4,5, but the effect on large-scale algorithms and error correction remains an open question. Elucidating the physics involved requires operating large numbers of qubits at the same rapid timescales necessary for error correction. Here, we use space- and time-resolved measurements of a large-scale quantum processor to identify bursts of quasiparticles produced by high-energy rays. We track the events from their initial localized impact as they spread, simultaneously and severely limiting the energy coherence of all qubits and causing chip-wide failure. Our results provide direct insights into the impact of these damaging error bursts and highlight the necessity of mitigation to enable quantum computing to scale.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rapid repetitive correlated sampling.
Fig. 2: Identifying events and background error.
Fig. 3: Localization and spread of error.
Fig. 4: Extracting energy decay times during events.

Data availability

The data that support the findings of this study are available in the FigShare repository34.

Code availability

The code used to analyse data for this study are available from the corresponding author on reasonable request.


  1. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article  ADS  Google Scholar 

  2. Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  3. Cardani, L. et al. Reducing the impact of radioactivity on quantum circuits in a deep-underground facility. Nat. Commun. 12, 2733 (2021).

    Article  ADS  Google Scholar 

  4. Vepsäläinen, A. P. et al. Impact of ionizing radiation on superconducting qubit coherence. Nature 584, 551–556 (2020).

    Article  ADS  Google Scholar 

  5. Wilen, C. D. et al. Correlated charge noise and relaxation errors in superconducting qubits. Nature 594, 369–373 (2021).

    Article  ADS  Google Scholar 

  6. Fowler, A. G. & Martinis, J. M. Quantifying the effects of local many-qubit errors and nonlocal two-qubit errors on the surface code. Phys. Rev. A 89, 032316 (2014).

    Article  ADS  Google Scholar 

  7. Zyla, P. et al. Review of particle physics. Prog. Theor. Exp. Phys 2020, 083C01 (2020).

    Article  Google Scholar 

  8. Martinis, J. M., Ansmann, M. & Aumentado, J. Energy decay in superconducting josephson-junction qubits from nonequilibrium quasiparticle excitations. Phys. Rev. Lett. 103, 097002 (2009).

    Article  ADS  Google Scholar 

  9. Lenander, M. et al. Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles. Phys. Rev. B 84, 024501 (2011).

    Article  ADS  Google Scholar 

  10. Corcoles, A. D. et al. Protecting superconducting qubits from radiation. Appl. Phys. Lett. 99, 181906 (2011).

    Article  ADS  Google Scholar 

  11. Catelani, G. et al. Quasiparticle relaxation of superconducting qubits in the presence of flux. Phys. Rev. Lett. 106, 077002 (2011).

    Article  ADS  Google Scholar 

  12. Wang, C. et al. Measurement and control of quasiparticle dynamics in a superconducting qubit. Nat. Commun. 5, 5836 (2014).

    Article  ADS  Google Scholar 

  13. Serniak, K. et al. Hot nonequilibrium quasiparticles in transmon qubits. Phys. Rev. Lett. 121, 157701 (2018).

    Article  ADS  Google Scholar 

  14. Karatsu, K. et al. Mitigation of cosmic ray effect on microwave kinetic inductance detector arrays. Appl. Phys. Lett. 114, 032601 (2019).

    Article  ADS  Google Scholar 

  15. Martinis, J. M. Saving superconducting quantum processors from decay and correlated errors generated by gamma and cosmic rays. npj Quantum Inf. 7, 90 (2021).

    Article  ADS  Google Scholar 

  16. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  ADS  Google Scholar 

  17. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article  ADS  Google Scholar 

  18. Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

    Article  Google Scholar 

  19. Neill, C. A Path Towards Quantum Supremacy with Superconducting Qubits. Ph.D. Thesis, University of California, Santa Barbara (2017).

  20. Yan, F. et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys. Rev. Appl. 10, 054062 (2018).

    Article  ADS  Google Scholar 

  21. Foxen, B. et al. Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms. Phys. Rev. Lett. 125, 120504 (2020).

    Article  ADS  Google Scholar 

  22. Klimov, P. V., Kelly, J., Martinis, J. M. & Neven, H. The snake optimizer for learning quantum processor control parameters. Preprint at (2020).

  23. Foxen, B. et al. Qubit compatible superconducting interconnects. Quantum Sci. Technol. 3, 014005 (2017).

    Article  ADS  Google Scholar 

  24. McEwen, M. et al. Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun. 12, 1761 (2021).

    Article  ADS  Google Scholar 

  25. Google Quantum AI. Exponential suppression of bit or phase errors with cyclic error correction. Nature 595, 383–387 (2021).

  26. Houzet, M., Serniak, K., Catelani, G., Devoret, M. H. & Glazman, L. I. Photon-assisted charge-parity jumps in a superconducting qubit. Phys. Rev. Lett. 123, 107704 (2019).

    Article  ADS  Google Scholar 

  27. Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).

    Article  Google Scholar 

  28. Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).

    Article  ADS  Google Scholar 

  29. Rainis, D. & Loss, D. Majorana qubit decoherence by quasiparticle poisoning. Phys. Rev. B 85, 174533 (2012).

    Article  ADS  Google Scholar 

  30. Karzig, T., Cole, W. S. & Pikulin, D. I. Quasiparticle poisoning of Majorana qubits. Phys. Rev. Lett. 126, 057702 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  31. Nsanzineza, I. & Plourde, B. L. T. Trapping a single vortex and reducing quasiparticles in a superconducting resonator. Phys. Rev. Lett. 113, 117002 (2014).

    Article  ADS  Google Scholar 

  32. Henriques, F. et al. Phonon traps reduce the quasiparticle density in superconducting circuits. Appl. Phys. Lett. 115, 212601 (2019).

    Article  ADS  Google Scholar 

  33. D’Addabbo, A. Applications of Kinetic Inductance Detectors to Astronomy and Particle Physics. PhD Thesis, Université de Grenoble (2014).

  34. Datasets for “Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits”. (Figshare, Google AI Quantum & Collaborators, 2021);

Download references


The authors thank B. Mazin, J. Baselmans, A. Endo, K. Karatsu, L. Glazman, R. McDermott and C. Wilen for stimulating discussions.

Author information

Authors and Affiliations



M.M. and R.B. designed the experiments. M.M. performed the experiments and analysed the data. L.F. and L.I. provided theoretical models. K.A. and M.M. implemented key components of the data-taking infrastructure. A.D., T.H., S.K. and B.B. designed and fabricated relevant devices. M.M., L.F., L.I. and R.B. prepared the manuscript. All authors contributed to the experimental infrastructure and manuscript revision.

Corresponding author

Correspondence to Rami Barends.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary discussion and Figs. 1–4.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McEwen, M., Faoro, L., Arya, K. et al. Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits. Nat. Phys. 18, 107–111 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing