Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Logical-qubit operations in an error-detecting surface code

Abstract

Future fault-tolerant quantum computers will require storing and processing quantum data in logical qubits. Here we realize a suite of logical operations on a distance-2 surface code qubit built from seven physical qubits and stabilized using repeated error-detection cycles. Logical operations include initialization into arbitrary states, measurement in the cardinal bases of the Bloch sphere and a universal set of single-qubit gates. For each type of operation, we observe higher performance for fault-tolerant variants over non-fault-tolerant variants, and quantify the difference. In particular, we demonstrate process tomography of logical gates, using the notion of a logical Pauli transfer matrix. This integration of high-fidelity logical operations with a scalable scheme for repeated stabilization is a milestone on the road to quantum error correction with higher-distance superconducting surface codes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface-7 quantum processor and initialization of logical cardinal states.
Fig. 2: Arbitrary logical-state initialization and measurement in the logical cardinal bases.
Fig. 3: Logical gates and their characterization.
Fig. 4: Repetitive error detection using pipelined and parallel stabilizer measurement schemes.

Similar content being viewed by others

Data availability

The data supporting the plots and claims within this paper are available online at http://github.com/DiCarloLab-Delft/Logical_Qubit_Operations_Data.

References

  1. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article  Google Scholar 

  2. Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  3. Martinis, J. M. Qubit metrology for building a fault-tolerant quantum computer. npj Quantum Inf. 1, 15005 (2015).

    Article  ADS  Google Scholar 

  4. Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    Article  ADS  Google Scholar 

  5. Chen, Z. et al. Exponential suppression of bit or phase errors with cyclic error correction. Nature 595, 383–387 (2021).

    Article  Google Scholar 

  6. Lescanne, R. et al. Exponential suppression of bit-flips in a qubit encoded in an oscillator. Nat. Phys. 16, 509–513 (2020).

    Article  Google Scholar 

  7. Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205–209 (2020).

    Article  ADS  Google Scholar 

  8. Ristè, D. et al. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nat. Commun. 6, 6983 (2015).

    Article  ADS  Google Scholar 

  9. Cramer, J. et al. Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nat. Commun. 5, 11526 (2016).

    Article  ADS  Google Scholar 

  10. Ristè, D. et al. Real-time processing of stabilizer measurements in a bit-flip code. npj Quantum Inf. 6, 71 (2020).

    Article  ADS  Google Scholar 

  11. Nigg, D. et al. Quantum computations on a topologically encoded qubit. Science 345, 302–305 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  12. Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281–286 (2021).

    Article  ADS  Google Scholar 

  13. Erhard, A. et al. Entangling logical qubits with lattice surgery. Nature 589, 220–224 (2021).

    Article  ADS  Google Scholar 

  14. Negnevitsky, V. et al. Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register. Nature 563, 527–531 (2018).

    Article  ADS  Google Scholar 

  15. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article  ADS  Google Scholar 

  16. Andersen, C. K. et al. Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits. npj Quantum Inf. 5, 69 (2019).

    Article  ADS  Google Scholar 

  17. Bultink, C. C. et al. Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements. Sci. Adv. 6, aay3050 (2020).

    Article  ADS  Google Scholar 

  18. Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    Article  ADS  Google Scholar 

  19. Hu, L. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 15, 503–508 (2019).

    Article  Google Scholar 

  20. Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).

    Article  Google Scholar 

  21. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article  ADS  Google Scholar 

  22. Andersen, C. K. et al. Repeated quantum error detection in a surface code. Nat. Phys. 16, 875–880 (2020).

    Article  Google Scholar 

  23. Chow, J. M. et al. Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Phys. Rev. Lett. 109, 060501 (2012).

    Article  ADS  Google Scholar 

  24. Versluis, R. et al. Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8, 034021 (2017).

    Article  ADS  Google Scholar 

  25. Tomita, Y. & Svore, K. M. Low-distance surface codes under realistic quantum noise. Phys. Rev. A 90, 062320 (2014).

    Article  ADS  Google Scholar 

  26. Saira, O.-P. et al. Entanglement genesis by ancilla-based parity measurement in 2D circuit QED. Phys. Rev. Lett. 112, 070502 (2014).

    Article  ADS  Google Scholar 

  27. Takita, M. et al. Demonstration of weight-four parity measurements in the surface code architecture. Phys. Rev. Lett. 117, 210505 (2016).

    Article  ADS  Google Scholar 

  28. Aliferis, P., Gottesman, D. & Preskill, J. Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 97–165 (2005).

    MathSciNet  MATH  Google Scholar 

  29. Paetznick, A. & Svore, K. M. Repeat-until-success: non-deterministic decomposition of single-qubit unitaries. Quantum Inf. Comput. 14, 1277–1301 (2014).

    MathSciNet  Google Scholar 

  30. Varbanov, B. M. et al. Leakage detection for a transmon-based surface code. npj Quantum Inf. 6, 102 (2020).

    Article  ADS  Google Scholar 

  31. McEwen, M. et al. Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun. 12, 1761 (2021).

    Article  ADS  Google Scholar 

  32. Battistel, F., Varbanov, B. M. & Terhal, B. M. Hardware-efficient leakage-reduction scheme for quantum error correction with superconducting transmon qubits. PRX Quantum 2, 030314 (2021).

    Article  ADS  Google Scholar 

  33. Satzinger, K. J. et al. Realizing topologically ordered states on a quantum processor. Preprint at https://arxiv.org/abs/2104.01180 (2021).

  34. Heinsoo, J. et al. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018).

    Article  ADS  Google Scholar 

  35. Schreier, J. A. et al. Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77, 180502(R) (2008).

    Article  ADS  Google Scholar 

  36. Negîrneac, V. et al. High-fidelity controlled-Z gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor. Phys. Rev. Lett. 126, 220502 (2021).

    Article  ADS  Google Scholar 

  37. IBM Quantum and Community Qiskit: an open-source framework for quantum computing. Zenodo https://zenodo.org/record/5670152 (2021).

  38. de Jong, J. Implementation of a Fault-Tolerant SWAP Operation on the IBM 5-Qubit Device. MSc thesis, Delft University of Technology (2019).

Download references

Acknowledgements

We thank R. Sagastizabal, M. Sarsby and T. Stavenga for experimental assistance, and G. Calusine and W. Oliver (MIT Lincoln Laboratories) for providing the travelling-wave parametric amplifiers used in the readout amplification chain. This research is supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via the US Army Research Office grant no. W911NF-16-1-0071 and by Intel Corporation. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA or the US Government. B.M.V., F.B. and B.M.T. are supported by ERC grant EQEC no. 682726.

Author information

Authors and Affiliations

Authors

Contributions

J.F.M. performed the experiment and data analysis. M.B., N.H. and L.D. designed the device. N.M., C.Z. and A.B. fabricated the device. J.F.M. and H.A. calibrated the device. M.S.M. and W.V. designed the control electronics. B.M.V. performed the numerical simulations and F.B. implemented the MLE method. B.M.T. supervised the theory work. J.F.M. and L.D. wrote the manuscript with contributions from B.M.V., F.B. and B.M.T., and feedback from all co-authors. L.D. supervised the project.

Corresponding author

Correspondence to L. DiCarlo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Table 1 and Discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, J.F., Varbanov, B.M., Moreira, M.S. et al. Logical-qubit operations in an error-detecting surface code. Nat. Phys. 18, 80–86 (2022). https://doi.org/10.1038/s41567-021-01423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01423-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing