Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Degree-preserving network growth

Abstract

Real-world networks evolve over time through the addition or removal of nodes and edges. In current network-evolution models, the degree of each node varies or grows arbitrarily, yet there are many networks for which a different description is required. In some networks, node degree saturates, such as the number of active contacts of a person, and in some it is fixed, such as the valence of an atom in a molecule. Here we introduce a family of network growth processes that preserve node degree, resulting in structures substantially different from those reported previously. We demonstrate that, despite it being an NP (non-deterministic polynomial time)-hard problem in general, the exact structure of most real-world networks can be generated from degree-preserving growth. We show that this process can create scale-free networks with arbitrary exponents, however, without preferential attachment. We present applications to epidemics control via network immunization, to viral marketing, to knowledge dissemination and to the design of molecular isomers with desired properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Degree-preserving growth.
Fig. 2: Real-world networks from DPG process.
Fig. 3: DPG models.
Fig. 4: Scale-free DPG networks.
Fig. 5: DPG in network design.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes used for simulation and analysis are available from the corresponding author upon reasonable request.

References

  1. Barabasi, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  2. Burt, R. S. Decay functions. Soc. Netw. 22, 1–28 (2000).

    Article  Google Scholar 

  3. Bahulkar, A., Szymanski, B. K., Lizardo, O., Dong, Y., Yang, Y. & Chawla, N. V. Analysis of link formation, persistence and dissolution in NetSense data. In Proc. 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) 1197–1204 (IEEE, 2016).

  4. Lovász, L. & Plummer, M. D. Matching Theory (AMS Chelsea, 2009).

  5. Trinajstić, N., Klein, D. J. & Randić, M. On some solved and unsolved problems of chemical graph theory. Intl J. Quant. Chem. 30, 699–742 (1986).

    Article  Google Scholar 

  6. Liu, Y. Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks. Nature 473, 167–173 (2011).

    Article  ADS  Google Scholar 

  7. Burt, R. S. Structural Holes: The Social Structure of Competition (Harvard Univ. Press, 1992).

  8. Burt, R. S. Reinforced structural holes. Soc. Netw. 48, 149–161 (2015).

    Article  Google Scholar 

  9. Kleinberg, J., Suri, S., Tardos, É. & Wexler, T. Strategic network formation with structural holes. In Proc. 9th ACM Conference on Electronic Commerce (EC ’08) 284–293 (Association for Computing Machinery, 2008).

  10. Roy, S. & Jones, A. K. Cutting out the middleman. Nat. Chem. Biol. 9, 603–605 (2013).

    Article  Google Scholar 

  11. Edmonds, J. Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965).

    Article  MathSciNet  Google Scholar 

  12. Erdös, P. L., Kharel, S. R., Mezei, T. R. & Toroczkai, Z. Degree-preserving graph dynamics—a versatile process to construct random networks. Preprint at https://arxiv.org/abs/2111.11994 (2021).

  13. Biedl, T., Demaine, E. D., Duncan, C. A., Fleischer, R. & Kobourov, S. G. Tight bounds on maximal and maximum matchings. Discrete Math. 285, 7–15 (2004).

    Article  MathSciNet  Google Scholar 

  14. Henning, M. A. & Yeo, A. Tight lower bounds on the matching number in a graph with given maximum degree. J. Graph Theory 89, 115–149 (2018).

    Article  MathSciNet  Google Scholar 

  15. Frieze, A. & Pittel, B. in Mathematics and Computer Science III: Algorithms, Trees, Combinatorics and Probabilities (eds Drmota, M. et al.) 95–132 (Birkhäuser, 2004).

  16. Bourassa, V. & Holt, F. SWAN: Small-world wide area networks. In Proc. International Conference on Advances in Infrastructure (SSGRR 2003w), paper 64 (2003).

  17. Holt, F. B., Bourassa, V., Bosnjakovic, A. M. & Popovic, J. in Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks (ed. Wu, J.) 799–824 (CRC, 2005).

  18. Hu, J., MacDonald, A. H. & McKay, B. D. Correlations in two-dimensional vortex liquids. Phys. Rev. B 49, 15263–15270 (1994).

    Article  ADS  Google Scholar 

  19. Robinson, R. W. & Wormald, N. C. Almost all regular graphs are hamiltonian. Random Struct. Algorithms 5, 363–374 (1994).

    Article  MathSciNet  Google Scholar 

  20. Cooper, C., Dyer, M. & Greenhill, C. Sampling regular graphs and a peer-to-peer network. Comb. Probab. Comput. 16, 557–593 (2007).

    Article  MathSciNet  Google Scholar 

  21. Tomita, K., Kurokawa, H. & Murata, S. Graph automata: natural expression of self-reproduction. Physica D 171, 197–210 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  22. Földes, S., Hammer, P.L. Split graphs. In Proc. 8th Southeastern Conference on Combinatorics, Graph Theory and Computing (eds Hoffman, F. et al.) 311–315 (Utilitas Mathematica, 1977).

  23. Hammer, P. L. & Simeone, B. The splittance of a graph. Combinatorica 1, 275–284 (1981).

    Article  MathSciNet  Google Scholar 

  24. Barrus, M. D., Hartke, S. G., Jao, K. F. & West, D. B. Length thresholds for graphic lists given fixed largest and smallest entries and bounded gaps. Discrete Math. 312, 1494–1501 (2012).

    Article  MathSciNet  Google Scholar 

  25. Bollobás, B. A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Comb. 1, 311–316 (1980).

    Article  MathSciNet  Google Scholar 

  26. Molloy, M. & Reed, B. A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6, 161–180 (1995).

    Article  MathSciNet  Google Scholar 

  27. Chung, F. & Lu, L. The average distances in random graphs with given expected degrees. Proc. Natl Acad. Sci. USA 99, 15879–15882 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  28. Kim, H., Toroczkai, Z., Erdős, P. L., Miklós, I. & Székely, L. A. Degree-based graph construction. J. Phys. A 42, 392001 (2009).

    Article  MathSciNet  Google Scholar 

  29. Xulvi-Brunet, R. & Sokolov, I. M. Changing correlations in networks: assortativity and dissortativity. Acta Phys. Pol. B 306, 1431–1455 (2005).

    ADS  Google Scholar 

  30. Li, X. & Shi, Y. A survey on the Randić index. MATCH Commun. Math. Comput. Chem. 59, 127–156 (2008).

    MathSciNet  MATH  Google Scholar 

  31. Randić, M. On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975).

    Article  Google Scholar 

  32. Devillers, J. & Balaban, A. T. (eds) Topological Indices and Related Descriptors in QSAR and QSPR (Wiley-VCH, 1999).

  33. Newman, M. E. J. Assortative mixing in networks. Phys. Rev. Lett. 89, 208701 (2002).

    Article  ADS  Google Scholar 

  34. Van Mieghem, P., Wang, H., Ge, X., Tang, S. & Kuipers, F. A. Influence of assortativity and degree-preserving rewiring on the spectra of networks. Eur. Phys. J. B 76, 643–652 (2010).

    Article  ADS  Google Scholar 

  35. Winterbach, W., de Ridder, D., Wang, H. J., Reinders, M. & Van Mieghem, P. Do greedy assortativity optimization algorithms produce good results? Eur. Phys. J. B 85, 151 (2012).

    Article  ADS  Google Scholar 

  36. Abdo, H., Dimitrov, D., Réti, T. & Stevanović, D. Estimating the spectral radius of a graph by the second Zagreb index. MATCH Commun. Math. Comput. Chem. 72, 741–751 (2014).

    MathSciNet  MATH  Google Scholar 

  37. Wang, Y., Chakrabarti, D., Wang, C. & Faloutsos, C. Epidemic spreading in real networks: an eigenvalue viewpoint. In Proc. 22nd International Symposium on Reliable Distributed Systems (SRDS) 25–34 (IEEE, 2003).

  38. Saha, S., Adiga, A., Aditya Prakash, B., & Vullikanti, A. K. S. Approximation algorithms for reducing the spectral radius to control epidemic spread. In Proc. 15th SIAM International Conference on Data Mining (SDM) 568–576 (2015).

  39. Cvetković, D. & Simić, S. Graph spectra in computer science. Linear Algebra Its Appl. 434, 1545–1562 (2011).

    Article  MathSciNet  Google Scholar 

  40. Chung, F. R. K. Spectral Graph Theory (American Mathematical Society, 1997).

  41. Dall, J. & Christensen, M. Random geometric graphs. Phys. Rev. E 66, 016121 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  42. Jacob, F. Evolution and tinkering. Science 196, 1161–1166 (1977).

    Article  ADS  Google Scholar 

  43. Jacomy, M., Venturini, T., Heymann, S. & Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE 9, 98679 (2014).

    Article  ADS  Google Scholar 

  44. Del Genio, C. I., Gross, T. & Bassler, K. E. All scale-free networks are sparse. Phys. Rev. Lett. 107, 178701 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Soltész, I. Miklós, N. Rupprecht and J. Baker for useful discussions. The project was supported in part by the United States National Science Foundation through grant IIS-1724297 (Z.T.) and by the National Research, Development and Innovation Office of Hungary through NKFIH grants K 116769, KH 126853, K 132696 and SNN 135643 (P.L.E. and T.R.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.R.K. performed mathematical modelling, contributed proofs, provided analysis tools, designed and ran experiments, analysed data and generated the figures. S.C. ran experiments. T.R.M. and P.L.E. performed mathematical modelling and provided proofs. Z.T. proposed the main idea, performed mathematical modelling, contributed proofs and was the lead writer of the manuscript. All authors contributed to proofreading the paper.

Corresponding author

Correspondence to Zoltan Toroczkai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Thilo Gross and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, derivations, proofs, Figs. 1–11 and Tables 1 and 2.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharel, S.R., Mezei, T.R., Chung, S. et al. Degree-preserving network growth. Nat. Phys. 18, 100–106 (2022). https://doi.org/10.1038/s41567-021-01417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01417-7

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics