Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Excitonic nature of magnons in a quantum Hall ferromagnet

Abstract

Magnons enable the transfer of a magnetic moment or spin over macroscopic distances. In quantum Hall ferromagnets, it has been predicted1 that spin and charge are entangled, meaning that any change in the spin texture modifies the charge distribution. As a direct consequence of this entanglement, magnons should carry an electric dipole moment. Here we report evidence of this electric dipole moment in a graphene quantum Hall ferromagnet2,3 using a Mach–Zehnder interferometer. As magnons propagate across the insulating bulk, their electric dipole moment modifies the Aharonov–Bohm flux through the interferometer, affecting both phase and visibility of the interference pattern. In particular, we relate the phase shift to the sign of this electric dipole moment and the loss of visibility to the flux of emitted magnons, and we show that the magnon emission is a Poissonian process. Finally, we probe the emission energy threshold of the magnons for transient states, between ν = 0 and ν = 1, and link them to the emergence of the gapless mode predicted in the canted-antiferromagnetic phase at charge neutrality4,5. The ability to couple the spin degree of freedom to an electrostatic potential is a property of quantum Hall ferromagnets that could be promising for spintronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transmission and reflection of magnons at a p–n junction interface.
Fig. 2: Magnon detection with an MZI.
Fig. 3: Phase shift and decoherence as a function of the injected current into an MZI.
Fig. 4: Magnon properties around νB = 1 and when approaching νB = 0 or νB = 2.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All the data, code and materials used in the analysis are available in some form to any researcher for purposes of reproducing or extending the analysis.

References

  1. Sondhi, S. L., Karlhede, A., Kivelson, S. A. & Rezayi, E. H. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B 47, 16419–16426 (1993).

    Article  ADS  Google Scholar 

  2. Yang, K., Das Sarma, S. & MacDonald, A. H. Collective modes and skyrmion excitations in graphene SU(4) quantum Hall ferromagnets. Phys. Rev. B 74, 075423 (2006).

    Article  ADS  Google Scholar 

  3. Wei, N., Huang, C. & MacDonald, A. H. Scattering of magnons at graphene quantum-Hall-magnet junctions. Phys. Rev. Lett. 126, 117203 (2021).

    Article  ADS  Google Scholar 

  4. Brey, L., Fertig, H. A., Côté, R. & MacDonald, A. H. Skyrme crystal in a two-dimensional electron gas. Phys. Rev. Lett. 75, 2562–2565 (1995).

    Article  ADS  Google Scholar 

  5. Jolicoeur, T. & Pandey, B. Quantum Hall skyrmions at ν = 0, ±1 in monolayer graphene. Phys. Rev. B 100, 115422 (2019).

    Article  ADS  Google Scholar 

  6. Galanakis, I. & Dederichs, H. P. (eds) Half-Metallic Alloys, Fundamentals and Applications (Springer-Verlag, 2005).

  7. Sarma, S. D. & Pinczuk, A. Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor Structures 307–341 (Wiley-VCH Verlag, 1996).

  8. Kallin, C. & Halperin, B. I. Excitations from a filled Landau level in the two-dimensional electron gas. Phys. Rev. B 30, 5655–5668 (1984).

    Article  ADS  Google Scholar 

  9. Young, A. et al. Spin and valley quantum Hall ferromagnetism in graphene. Nat. Phys. 8, 550–556 (2012).

    Article  Google Scholar 

  10. Lian, Y., Rosch, A. & Goerbig, M. O. SU(4) skyrmions in the ν = ±1 quantum Hall state of graphene. Phys. Rev. Lett. 117, 056806 (2016).

    Article  ADS  Google Scholar 

  11. Lian, Y., & Goerbig, M. O. Spin-valley skyrmions in graphene at filling factor ν = −1. Phys. Rev. B 95, 245428 (2017).

    Article  ADS  Google Scholar 

  12. Zhou, H., Polshyn, H., Taniguchi, T., Watanabe, K. & Young, A. F. Solids of quantum Hall skyrmions in graphene. Nat. Phys. 16, 154–158 (2019).

    Article  Google Scholar 

  13. Wei, D. S. et al. Electrical generation and detection of spin waves in a quantum Hall ferromagnet. Science 362, 229–233 (2018).

  14. Stepanov, P. et al. Long-distance spin transport through a graphene quantum Hall antiferromagnet. Nat. Phys. 14, 907–911 (2018).

  15. Ji, Y. et al. An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003).

  16. Morikawa, S. et al. Edge-channel interferometer at the graphene quantum Hall pn junction. Appl. Phys. Lett. 106, 183101 (2015).

    Article  ADS  Google Scholar 

  17. Wei, D. S. et al. Mach–Zehnder interferometry using spin- and valley-polarized quantum Hall edge states in graphene. Sci. Adv. 3, e1700600 (2017).

  18. Jo, M. et al. Quantum Hall valley splitters and a tunable Mach–Zehnder interferometer in graphene. Phys. Rev. Lett. 126, 146803 (2021).

  19. Roulleau, P. et al. Noise dephasing in edge states of the integer quantum hall regime. Phys. Rev. Lett. 101, 186803 (2008).

    Article  ADS  Google Scholar 

  20. Neder, I., Heiblum, M., Levinson, Y., Mahalu, D. & Umansky, V. Unexpected behavior in a two-path electron interferometer. Phys. Rev. Lett. 96, 016804 (2006).

    Article  ADS  Google Scholar 

  21. Roulleau, P. et al. Finite bias visibility of the electronic Mach–Zehnder interferometer. Phys. Rev. B 76, 161309(R) (2007).

  22. Levkivskyi, I. P. & Sukhorukov E. V. Noise-induced phase transition in the electronic Mach–Zehnder interferometer. Phys. Rev. Lett. 103, 036801 (2009).

  23. Helzel, A. et al. Counting statistics and dephasing transition in an electronic Mach–Zehnder interferometer. Phys. Rev. B 91, 245419 (2015).

  24. Kumada, N., Muraki, K. & Hirayma, Y. Low-frequency spin dynamics in a canted antiferromagnet. Science 313, 329–332 (2006).

    Article  ADS  Google Scholar 

  25. Wu, F., Sodemann, I., Araki, Y., MacDonald, A. H. & Jolicoeur, T. SO(5) symmetry in the quantum Hall effect in graphene. Phys. Rev. B 90, 235432 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We warmly thank H.-S. Sim, J.-Y. Lee, M. O. Goerbig, C.-L. Huang, N. Wei and A. M. Donald for enlightening discussions, as well as P. Jacques for technical support. We thank W. Dumnernpanich for his help in fabrication. This work was funded by the ERC starting grant COHEGRAPH 679531 (P. Roulleau), by the EMPIR project SEQUOIA 17FUN04 co-financed by the participating states and the EU’s Horizon 2020 programme (P. Roulleau) and by ‘Investissements d’Avenir’ LabEx PALM (ANR-10-LABX-0039-PALM) (Project ZerHall) (F.D.P.).

Author information

Authors and Affiliations

Authors

Contributions

A.A., M.J., P.B. and P. Roulleau performed the experiment with help from F.D.P. and P. Roche. A.A., P.B., M.J., F.D.P. and P. Roulleau analysed and discussed the data with help from P. Roche. T.J. and P. Roulleau developed the theoretical model. T.T. and K.W. provided the boron nitride layers. M.J. fabricated the device with inputs from P.B., A.A., F.D.P. and P. Roulleau. A.A., F.D.P., P. Roche and P. Roulleau wrote the manuscript with inputs from all the authors. P. Roulleau designed and supervised the project.

Corresponding author

Correspondence to P. Roulleau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Petr Stepanov, So Takei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Figs. 1–18.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assouline, A., Jo, M., Brasseur, P. et al. Excitonic nature of magnons in a quantum Hall ferromagnet. Nat. Phys. 17, 1369–1374 (2021). https://doi.org/10.1038/s41567-021-01411-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01411-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing