Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Twist engineering of the two-dimensional magnetism in double bilayer chromium triiodide homostructures

Abstract

Twist engineering—the alignment of two-dimensional (2D) crystalline layers with a specific orientation—has led to tremendous success in controlling the charge degree of freedom, particularly in producing correlated and topological electronic phases in moiré crystals1,2. However, although pioneering theoretical efforts have predicted that non-trivial magnetism3,4,5 and magnons6,7 can be made by twisting 2D magnets, the experimental realization of engineering the spin degree of freedom by twisting remains elusive. Here we fabricate twisted double bilayers of a 2D magnet, namely, chromium triiodide (CrI3), and demonstrate the successful twist engineering of 2D magnetism in them. We identify signatures of a new magnetic ground state that is distinct from those in natural two-layer (2L) and four-layer (4L) CrI3. We show that for a very small twist angle, this emergent magnetism can be well approximated by a weighted linear superposition of those of 2L and 4L CrI3, whereas for a large twist angle, it mostly resembles that of isolated 2L CrI3. However, at an intermediate twist angle, there is a finite net magnetization that cannot be simply inferred from any homogeneous stacking configuration, but emerges because spin frustrations are introduced by competition between ferromagnetic and antiferromagnetic exchange coupling within individual moiré supercells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sample fabrication, TEM and magneto-Raman characterizations of tDB CrI3.
Fig. 2: Twist-angle dependence of the magneto-Raman spectra of tDB CrI3.
Fig. 3: Magnetic-field dependence of the magneto-Raman spectra of tDB CrI3 at selected twist angles.
Fig. 4: Raman circular dichroism and magnetic circular dichroism for 1.1° tDB CrI3.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article  Google Scholar 

  2. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  Google Scholar 

  3. Hejazi, K., Luo, Z.-X. & Balents, L. Noncollinear phases in moiré magnets. Proc. Natl Acad. Sci. USA 117, 10721–10726 (2020).

    Article  MathSciNet  Google Scholar 

  4. Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).

    Article  ADS  Google Scholar 

  5. Hejazi, K., Luo, Z.-X. & Balents, L. Heterobilayer moiré magnets: moiré skyrmions and commensurate-incommensurate transitions. Phys. Rev. B 104, L100406 (2021).

    Article  ADS  Google Scholar 

  6. Wang, C., Gao, Y., Lv, H., Xu, X. & Xiao, D. Stacking domain wall magnons in twisted van der waals magnets. Phys. Rev. Lett. 125, 247201 (2020).

    Article  ADS  Google Scholar 

  7. Li, Y. H. & Cheng, R. Moiré magnons in twisted bilayer magnets with collinear order. Phys. Rev. B 102, 094404 (2020).

    Article  ADS  Google Scholar 

  8. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  Google Scholar 

  9. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  10. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  ADS  Google Scholar 

  11. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  ADS  Google Scholar 

  12. Nuckolls, K. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).

    Article  ADS  Google Scholar 

  13. Wu, S., Zhang, Z., Watanabe, K., Taniguchi, T. & Andrei, E. Y. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater. 20, 488–494 (2021).

    Article  ADS  Google Scholar 

  14. Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article  ADS  Google Scholar 

  15. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  ADS  Google Scholar 

  16. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  ADS  Google Scholar 

  17. Wang, J. et al. Optical generation of high carrier densities in 2D semiconductor heterobilayers. Sci. Adv. 5, eaax0145 (2019).

    Article  ADS  Google Scholar 

  18. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  ADS  Google Scholar 

  19. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article  ADS  Google Scholar 

  20. Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    Article  ADS  Google Scholar 

  21. Quan, J. et al. Phonon renormalization in reconstructed MoS2 moiré superlattices. Nat. Mater. 20, 1100–1105 (2021).

    Article  ADS  Google Scholar 

  22. Lin, M.-L. et al. Moiré phonons in twisted bilayer MoS2. ACS Nano 12, 8770–8780 (2018).

    Article  Google Scholar 

  23. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article  ADS  Google Scholar 

  24. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  ADS  Google Scholar 

  25. Chen, W. et al. Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366, 983–987 (2019).

    Article  ADS  Google Scholar 

  26. Kim, H. H. et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl Acad. Sci. USA 116, 11131–11136 (2019).

    Article  ADS  Google Scholar 

  27. Jin, W. et al. Observation of the polaronic character of excitons in a two-dimensional semiconducting magnet CrI3. Nat. Commun. 11, 4780 (2020).

    Article  ADS  Google Scholar 

  28. Li, S. et al. Magnetic-field-induced quantum phase transitions in a van der Waals magnet. Phys. Rev. 10, 011075 (2020).

    Article  Google Scholar 

  29. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article  ADS  Google Scholar 

  30. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article  ADS  Google Scholar 

  31. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article  ADS  Google Scholar 

  32. Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303–1308 (2019).

    Article  ADS  Google Scholar 

  33. Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 18, 1298–1302 (2019).

    Article  ADS  Google Scholar 

  34. Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    Article  ADS  Google Scholar 

  35. Jin, W. et al. Tunable layered-magnetism–assisted magneto-Raman effect in a two-dimensional magnet CrI3. Proc. Natl Acad. Sci. USA 117, 24664–24669 (2020).

    Article  ADS  Google Scholar 

  36. Jin, W. et al. Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet. Nat. Commun. 9, 5122 (2018).

    Article  ADS  Google Scholar 

  37. Huang, B. et al. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat. Nanotechnol. 15, 212–216 (2020).

    Article  ADS  Google Scholar 

  38. Zhang, Y. et al. Magnetic order-induced polarization anomaly of Raman scattering in 2D magnet CrI3. Nano Lett. 20, 729–734 (2020).

    Article  ADS  Google Scholar 

  39. McCreary, A. et al. Distinct magneto-Raman signatures of spin-flip phase transitions in CrI3. Nat. Commun. 11, 3879 (2020).

    Article  ADS  Google Scholar 

  40. Jin, W. et al. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2020).

    Article  Google Scholar 

  41. Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    Article  ADS  Google Scholar 

  42. Wernsdorfer, W. From micro- to nano-SQUIDs: applications to nanomagnetism. Supercond. Sci. Technol. 22, 064013 (2009).

    Article  ADS  Google Scholar 

  43. van der Laan, G. & Figueroa, A. I. X-ray magnetic circular dichroism—a versatile tool to study magnetism. Coord. Chem. Rev. 277–278, 95–129 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

L.Z. acknowledges support by NSF CAREER grant no. DMR-174774 and AFOSR YIP grant no. FA9550-21-1-0065. R. He acknowledges support by NSF CAREER grant no. DMR-1760668. K.S. acknowledges support by NSF grant no. NSF-EFMA-1741618. R. Hovden acknowledges support from the W. M. Keck Foundation. This work made use of facilities at the Michigan Center for Materials Characterization. H.L. acknowledges support by the National Key R&D Program of China (grant nos. 2018YFE0202600 and 2016YFA0300504), the National Natural Science Foundation of China (nos. 11774423 and 11822412), the Beijing Natural Science Foundation (grant no. Z200005), and the Fundamental Research Funds for the Central Universities and Research Funds of Renmin University of China (RUC) (grant nos. 18XNLG14, 19XNLG17 and 20XNH062).

Author information

Authors and Affiliations

Authors

Contributions

L.Z., H.X. and X.L. conceived the idea and initiated this project. H.X. fabricated the 4L and 2L CrI3 and tDB CrI3 homostructures. H.X., X.L., G.Y., Z.Y. and H.G. carried out the Raman experiments under the supervision of L.Z. and R. He. S.H.S., E.R. and R. Hovden performed the TEM characterizations. S.Y., Y.F., S.T. and H.L. grew the van der Waals CrI3 bulk single crystals. K.S. performed the theoretical analysis. H.X., X.L., R. He and L.Z. analysed the data and wrote the manuscript. All the authors participated in the discussion of the results.

Corresponding authors

Correspondence to Rui He or Liuyan Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Sections 1–4.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Luo, X., Ye, G. et al. Twist engineering of the two-dimensional magnetism in double bilayer chromium triiodide homostructures. Nat. Phys. 18, 30–36 (2022). https://doi.org/10.1038/s41567-021-01408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01408-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing