Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Charge order and superconductivity in kagome materials

An Author Correction to this article was published on 02 February 2022

This article has been updated


Lattice geometry, topological electron behaviour and the competition between different possible ground states all play a role in determining the properties of materials with a kagome lattice structure. In particular, the compounds KV3Sb5, CsV3Sb5 and RbV3Sb5 all feature a kagome net of vanadium atoms. These materials have recently been shown to exhibit superconductivity at low temperature and an unusual charge order at high temperature, revealing a connection to the underlying topological nature of the band structure. We highlight these discoveries, place them in the context of wider research efforts in topological physics and superconductivity, and discuss the open problems for this field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topological band structure of AV3Sb5.
Fig. 2: Electronic and magnetic duality of the charge order in AV3Sb5.
Fig. 3: Intertwined superconductivity in AV3Sb5.

Change history


  1. Syôzi, I. Statistics of kagomé lattice. Prog. Theor. Phys. 6, 306–308 (1951).

    ADS  MathSciNet  MATH  Google Scholar 

  2. Kiesel, M. L. & Thomale, R. Sublattice interference in the kagome Hubbard model. Phys. Rev. B 86, 121105 (2012).

    Article  ADS  Google Scholar 

  3. Yu, S.-L. & Li, J.-X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012).

    Article  ADS  Google Scholar 

  4. Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87, 115135 (2013).

    Article  ADS  Google Scholar 

  5. Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).

    Article  ADS  Google Scholar 

  6. Yin, J.-X., Pan, S. H. & Zahid Hasan, M. Probing topological quantum matter with scanning tunnelling microscopy. Nat. Rev. Phys. 3, 249–263 (2021).

    Article  Google Scholar 

  7. Yin, J-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).

    ADS  Google Scholar 

  8. Nayak, C. Density-wave states of nonzero angular momentum. Phys. Rev. B 62, 4880–4889 (2000).

    Article  ADS  Google Scholar 

  9. Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    Article  Google Scholar 

  10. Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

  11. Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).

    Article  ADS  Google Scholar 

  12. Wu, X. et al. Nature of unconventional pairing in the kagome superconductors AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 177001 (2021).

  13. Ortiz, B. R. et al. CsV3Sb5: a \({{\mathbb{Z}}}_{2}\) topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    Article  ADS  Google Scholar 

  14. Du, F. et al. Pressure-induced double superconducting domes and charge instability in the kagome metal KV3Sb5. Phys. Rev. B 103, L220504 (2021).

    Article  ADS  Google Scholar 

  15. Chen, K. Y. et al. Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5 under high pressure. Phys. Rev. Lett. 126, 247001 (2021).

    Article  ADS  Google Scholar 

  16. Li, H. et al. Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors AV3Sb5 (A = Rb, Cs). Phys. Rev. X 11, 031050 (2021).

    Google Scholar 

  17. Liang, Z. et al. Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021).

    Google Scholar 

  18. Zhao, H. et al. Cascade of correlated electron states in a kagome superconductor CsV3Sb5. Nature (2021).

  19. Chen, H. et al. Roton pair density wave and unconventional strong-coupling superconductivity in a topological kagome metal. Nature (2021).

  20. Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Preprint at (2021).

  21. Wang, Z. et al. Distinctive momentum dependent charge-density-wave gap observed in CsV3Sb5 superconductor with topological Kagome lattice. Preprint at (2021).

  22. Nakayama, K. et al. Multiple energy scales and anisotropic energy gap in the charge-density-wave phase of the kagome superconductor CsV3Sb5. Phys. Rev. B 104, L161112 (2021).

  23. Liu, Z. et al. Charge-Density-Wave-Induced Bands Renormalization and Energy Gaps in a Kagome Superconductor RbV3Sb5. Phys. Rev. X 11, 041010 (2021).

  24. Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Preprint at (2021).

  25. Yin, Q. et al. Superconductivity and normal-state properties of kagome metal RbV3Sb5 single crystals. Chin. Phys. Lett. 38, 037403 (2021).

    Article  ADS  Google Scholar 

  26. Ortiz, B. R. et al. Fermi surface mapping and the nature of charge density wave order in the kagome superconductor CsV3Sb5. Preprint at (2021).

  27. Uykur, E., Ortiz, B. R., Wilson, S. D., Dressel, M. & Tsirlin, A. A. Optical detection of charge-density-wave instability in the non-magnetic kagome metal KV3Sb5. Preprint at (2021).

  28. Mu, C. et al. S-wave superconductivity in kagome metal CsV3sb5 revealed by 121/123sb NQR and 51v NMR measurements. Chin. Phys. Lett. 38, 077402 (2021).

    Article  ADS  Google Scholar 

  29. Song, D. W. et al. Orbital ordering and fluctuations in a kagome superconductor CsV3Sb5. Preprint at (2021).

  30. Kenney, E. M., Ortiz, B. R., Wang, C., Wilson, S. D. & Graf, M. J. Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. J. Phys. Condens. Matter 33, 235801 (2021).

    Article  ADS  Google Scholar 

  31. Yu, F. H. et al. Concurrence of anomalous hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B 104, L041103 (2021).

    Article  ADS  Google Scholar 

  32. Xiang, Y. et al. Nematic electronic state and twofold symmetry of superconductivity in the topological kagome metal CsV3Sb5. Preprint at (2021).

  33. Ratcliff, N., Hallett, L., Ortiz, B. R., Wilson, S. D. & Harter, J. W. Coherent phonon spectroscopy and interlayer modulation of charge density wave order in the kagome metal CsV3Sb5. Preprint at (2021).

  34. Uykur, E. et al. Low-energy optical properties of the nonmagnetic kagome metal CsV3Sb5. Phys. Rev. B 104, 045130 (2021).

    Article  ADS  Google Scholar 

  35. Wang, Z. X. et al. Unconventional charge density wave and photoinduced lattice symmetry change in kagome metal CsV3Sb5 probed by time-resolved spectroscopy. Phys. Rev. B 104, 165110 (2021).

  36. Wang, Z. et al. Electronic nature of chiral charge order in the kagome superconductor CsV3Sb5. Phys. Rev. B 104, 075148 (2021).

    Article  ADS  Google Scholar 

  37. Shumiya, N. et al. Intrinsic nature of chiral charge order in the kagome superconductor RbV3Sb5. Phys. Rev. B 104, 035131 (2021).

    Article  ADS  Google Scholar 

  38. Cho, S. et al. Emergence of new van Hove singularities in the charge density wave state of a topological kagome metal RbV3Sb5. Preprint at (2021).

  39. Luo, H. et al. Electronic nature of charge density wave and electron-phonon coupling in kagome superconductor KV3Sb5. Preprint at (2021).

  40. Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the Kagome superconductor AV3Sb5. Sci. Bull. 66, 1384–1388 (2021).

    Article  Google Scholar 

  41. Denner, M. M., Thomale, R. & Neupert, T. Analysis of charge order in the kagome metal AV3Sb5 (A = K, Rb, Cs). Preprint at (2021).

  42. Lin, Y.-P. & Nandkishore, R. M. Complex charge density waves at Van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals AV3Sb5 (A=K, Rb, Cs). Phys. Rev. B 104, 045122 (2021).

    Article  ADS  Google Scholar 

  43. Mielke, C. et al. Time-reversal symmetry-breaking charge order in a correlated kagome superconductor. Preprint at (2021).

  44. Haldane, F. D. M. Model for a quantum hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article  ADS  Google Scholar 

  45. Simon, M. E. & Varma, C. M. Detection and implications of a time-reversal breaking state in underdoped cuprates. Phys. Rev. Lett. 89, 247003 (2002).

    Article  ADS  Google Scholar 

  46. Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).

    Article  ADS  Google Scholar 

  47. Xu, H.-S. et al. Multiband superconductivity with sign-preserving order parameter in kagome superconductor CsV3Sb5. Preprint at (2021).

  48. Tsirlin, A. A. et al. Role of Sb in the superconducting kagome metal CsV3Sb5 revealed by its anisotropic compression. Preprint at (2021).

  49. Ortiz, B. R. et al. Superconductivity in the \({{\mathbb{Z}}}_{2}\) kagome metal KV3Sb5. Phys. Rev. Mater. 5, 034801 (2021).

    Article  Google Scholar 

  50. Norman, M. R., Pines, D. & Kallin, C. The pseudogap: friend or foe of high Tc? Adv. Phys. 54, 715–733 (2005).

    Article  ADS  Google Scholar 

  51. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).

    Article  ADS  Google Scholar 

  52. Zhao, C. C. et al. Nodal superconductivity and superconducting domes in the topological Kagome metal CsV3Sb5. Preprint at (2021).

  53. Zhu, C. C. et al. Double-dome superconductivity under pressure in the V-based Kagome metals AV3Sb5 (A = Rb and K). Preprint at (2021).

  54. Ni, S. et al. Anisotropic superconducting properties of kagome metal CsV3Sb5. Chin. Phys. Lett. 38, 057403 (2021).

    Article  ADS  Google Scholar 

  55. Wang, Y. et al. Proximity-induced spin-triplet superconductivity and edge supercurrent in the topological Kagome metal, K1−xV3Sb5. Preprint at (2021).

  56. Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021).

    Article  ADS  Google Scholar 

  57. Yu, F. H. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 3645 (2021).

  58. Yin, L. et al. Strain-sensitive superconductivity in kagome metals KV3Sb5 and CsV3Sb5 probed by point-contact spectroscopy. Preprint at (2021).

  59. Wang, T. et al. Enhancement of the superconductivity and quantum metallic state in the thin film of superconducting Kagome metal KV3Sb5. Preprint at (2021).

  60. Song, B. Q. et al. Competing superconductivity and charge-density wave in kagome metal CsV3Sb5: evidence from their evolutions with sample thickness. Preprint at (2021).

  61. Wang, N. N. et al. Competition between charge-density-wave and superconductivity in the kagome metal RbV3Sb5. Preprint at (2021).

Download references


We thank S. A. Kivelson, C. Varma, F. D. M. Haldane, S. Wilson, Z. Wang, Q. Wang, J. Hu, Q. Si, P. Dai and Z. Guguchia for stimulating discussions. We also thank X. Liu for helpful DFT calculations and visualizations. This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. ERC-StG-Neupert-757867-PARATOP). R.T. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Project-ID 258499086-SFB 1170 and through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter-ct.qmat Project-ID 390858490-EXC 2147. Work at Princeton University was supported by the Gordon and Betty Moore Foundation (grant nos. GBMF4547 and GBMF9461; M.Z.H.). The theoretical work and sample characterization were supported by the United States Department of Energy (US DOE) under the Basic Energy Sciences programme (grant no. DOE/BES DE-FG-02-05ER46200; M.Z.H.).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Titus Neupert, M. Michael Denner, Jia-Xin Yin, Ronny Thomale or M. Zahid Hasan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Xianhui Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neupert, T., Denner, M.M., Yin, JX. et al. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing