Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum gases in optical boxes

Abstract

Quantum atomic and molecular gases are flexible systems for studies of fundamental many-body physics. They have traditionally been produced in harmonic electromagnetic traps and thus had inhomogeneous densities, but recent advances in light shaping for optical trapping of neutral particles have led to the development of flat-bottomed optical box traps, allowing the creation of homogeneous samples. Box trapping simplifies the interpretation of experimental results, provides more direct connections with theory and, in some cases, allows qualitatively new, hitherto impossible experiments. It has now been achieved for both Bose and Fermi atomic gases in various dimensionalities, and also for gases of heteronuclear molecules. Here we review these developments and the consequent breakthroughs in the study of both equilibrium and non-equilibrium phenomena such as superfluidity, turbulence and the dynamics of phase transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical box traps.
Fig. 2: Quantum statistics in homogeneous gases.
Fig. 3: Sound and spectroscopy measurements on box-trapped gases.
Fig. 4: Non-equilibrium phenomena.

Similar content being viewed by others

References

  1. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

    Article  ADS  Google Scholar 

  2. Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).

    Article  ADS  Google Scholar 

  3. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  Google Scholar 

  4. Görlitz, A. et al. Realization of Bose–Einstein condensates in lower dimensions. Phys. Rev. Lett. 87, 130402 (2001).

    Article  ADS  Google Scholar 

  5. Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997).

    Article  Google Scholar 

  6. Anderson, B. P. & Kasevich, M. A. Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686 (1998).

    Article  ADS  Google Scholar 

  7. Greiner, M., Bloch, I., Mandel, O., Hänsch, T. W. & Esslinger, T. Exploring phase coherence in a 2D lattice of Bose–Einstein condensates. Phys. Rev. Lett. 87, 160405 (2001).

    Article  ADS  Google Scholar 

  8. Bloch, I. Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–30 (2005).

    Article  Google Scholar 

  9. Jin, D. S., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Collective excitations of a Bose–Einstein condensate in a dilute gas. Phys. Rev. Lett. 77, 420–423 (1996).

    Article  ADS  Google Scholar 

  10. Mewes, M.-O. et al. Collective excitations of a Bose–Einstein condensate in a magnetic trap. Phys. Rev. Lett. 77, 988–991 (1996).

    Article  ADS  Google Scholar 

  11. Andrews, M. R. et al. Propagation of sound in a Bose–Einstein condensate. Phys. Rev. Lett. 79, 553–556 (1997).

    Article  ADS  Google Scholar 

  12. Stamper-Kurn, D. M. et al. Reversible formation of a Bose–Einstein condensate. Phys. Rev. Lett. 81, 2194–2197 (1998).

    Article  ADS  Google Scholar 

  13. Greiner, M., Mandel, M. O., Esslinger, T., Hänsch, T. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  14. Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P. & Hadzibabic, Z. Bose–Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013).

    Article  ADS  Google Scholar 

  15. Chomaz, L. et al. Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas. Nat. Commun. 6, 6162 (2015).

    Article  ADS  Google Scholar 

  16. Tajik, M. et al. Designing arbitrary one-dimensional potentials on an atom chip. Optics Express 27, 33474 (2019).

    Article  ADS  Google Scholar 

  17. Mukherjee, B. et al. Homogeneous atomic Fermi gases. Phys. Rev. Lett. 118, 123401 (2017).

    Article  ADS  Google Scholar 

  18. Hueck, K. et al. Two-dimensional homogeneous Fermi gases. Phys. Rev. Lett. 120, 060402 (2018).

    Article  ADS  Google Scholar 

  19. Bause, R. et al. Collisions of ultracold molecules in bright and dark optical dipole traps. Phys. Rev. Res. 3, 033013 (2021).

    Article  Google Scholar 

  20. Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75 (2016).

    Article  ADS  Google Scholar 

  21. Ville, J. L. et al. Sound propagation in a uniform superfluid two-dimensional Bose gas. Phys. Rev. Lett. 121, 145301 (2018).

    Article  ADS  Google Scholar 

  22. Patel, P. B. et al. Universal sound diffusion in a strongly interacting Fermi gas. Science 370, 1222–1226 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  23. Baird, L., Wang, X., Roof, S. & Thomas, J. E. Measuring the hydrodynamic linear response of a unitary Fermi gas. Phys. Rev. Lett. 123, 160402 (2019).

    Article  ADS  Google Scholar 

  24. Garratt, S. J. et al. From single-particle excitations to sound waves in a box-trapped atomic Bose–Einstein condensate. Phys. Rev. A 99, 021601 (2019).

    Article  ADS  Google Scholar 

  25. Christodoulou, P. et al. Observation of first and second sound in a BKT superfluid. Nature 594, 191–194 (2021).

    Article  ADS  Google Scholar 

  26. Bohlen, M. et al. Sound propagation and quantum-limited damping in a two-dimensional Fermi gas. Phys. Rev. Lett. 124, 240403 (2020).

    Article  ADS  Google Scholar 

  27. Zhang, J. et al. Many-body decay of the gapped lowest excitation of a Bose–Einstein condensate. Phys. Rev. Lett. 126, 060402 (2021).

    Article  ADS  Google Scholar 

  28. Lopes, R. et al. Quantum depletion of a homogeneous Bose–Einstein condensate. Phys. Rev. Lett. 119, 190404 (2017).

    Article  ADS  Google Scholar 

  29. Biss, H. et al. Excitation spectrum and superfluid gap of an ultracold Fermi gas. Preprint at https://arxiv.org/abs/2105.09820 (2021).

  30. Sobirey, L. et al. Comparing fermionic superfluids in two and three dimensions. Preprint at https://arxiv.org/abs/2106.11893 (2021).

  31. Rauer, B. et al. Recurrences in an isolated quantum many-body system. Science 360, 307–310 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Schmidutz, T. F. et al. Quantum Joule–Thomson effect in a saturated homogeneous Bose gas. Phys. Rev. Lett. 112, 040403 (2014).

    Article  ADS  Google Scholar 

  33. Saint-Jalm, R. et al. Dynamical symmetry and breathers in a two-dimensional Bose gas. Phys. Rev. X 9, 021035 (2019).

    Google Scholar 

  34. Amico, L. et al. Roadmap on Atomtronics: State of the art and perspective. AVS Quantum Sci. 3, 039201 (2021).

    Article  ADS  Google Scholar 

  35. Kaufman, A. & Ni, K.-K. & Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. https://doi.org/10.1038/s41567-021-01357-2 (2021).

  36. Corman, L. et al. Quench-induced supercurrents in an annular Bose gas. Phys. Rev. Lett. 113, 135302 (2014).

    Article  ADS  Google Scholar 

  37. Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas. Science 347, 167–170 (2015).

    Article  ADS  Google Scholar 

  38. Keesling, A. et al. Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator. Nature 568, 207 (2019).

    Article  ADS  Google Scholar 

  39. Shibata, K., Ikeda, H., Suzuki, R. & Hirano, T. Compensation of gravity on cold atoms by a linear optical potential. Phys. Rev. Res. 2, 013068 (2020).

    Article  Google Scholar 

  40. Gauthier, G. et al. Direct imaging of a digital-micromirror device for configurable microscopic optical potentials. Optica 3, 1136–1143 (2016).

    Article  ADS  Google Scholar 

  41. Gauthier, G. et al. in Advances In Atomic, Molecular, and Optical Physics Vol. 70, 1–101 (Academic, 2021).

  42. Gaunt, A. L., Degenerate Bose Gases: Tuning Interactions & Geometry PhD thesis, Univ. Cambridge (2014).

  43. Manek, I., Ovchinnikov, Y. B. & Grimm, R. Generation of a hollow laser beam for atom trapping using an axicon. Opt. Comm. 147, 67–70 (1998).

    Article  ADS  Google Scholar 

  44. Henderson, K., Ryu, C., MacCormick, C. & Boshier, M. G. Experimental demonstration of painting arbitrary and dynamic potentials for Bose–Einstein condensates. N. J. Phys. 11, 043030 (2009).

    Article  Google Scholar 

  45. Davidson, N., Lee, H. J., Adams, C. S., Kasevich, M. & Chu, S. Long atomic coherence times in an optical dipole trap. Phys. Rev. Lett. 74, 1311 (1995).

    Article  ADS  Google Scholar 

  46. Ozeri, R., Khaykovich, L. & Davidson, N. Long spin relaxation times in a single-beam blue-detuned optical trap. Phys. Rev. A 59, R1750 (1999).

    Article  ADS  Google Scholar 

  47. Friedman, N., Khaykovich, L., Ozeri, R. & Davidson, N. Compression of cold atoms to very high densities in a rotating-beam blue-detuned optical trap. Phys. Rev. A 61, 031403 (2000).

    Article  ADS  Google Scholar 

  48. Rychtarik, D., Engeser, B., Nägerl, H.-C. & Grimm, R. Two-dimensional Bose–Einstein condensate in an optical surface trap. Phys. Rev. Lett. 92, 173003 (2004).

    Article  ADS  Google Scholar 

  49. Meyrath, T. P., Schreck, F., Hanssen, J. L., Chuu, C.-S. & Raizen, M. G. Bose–Einstein condensate in a box. Phys. Rev. A 71, 041604 (2005).

    Article  ADS  Google Scholar 

  50. Van Es, J. et al. Box traps on an atom chip for one-dimensional quantum gases. J. Phys. B 43, 155002 (2010).

    Article  ADS  Google Scholar 

  51. Ville, J. L. et al. Loading and compression of a single two-dimensional Bose gas in an optical accordion. Phys. Rev. A 95, 013632 (2017).

    Article  ADS  Google Scholar 

  52. Anderson, B. P. & Kasevich, M. A. Spatial observation of Bose–Einstein condensation of 87Rb in a confining potential. Phys. Rev. A 59, R938–R941 (1999).

    Article  ADS  Google Scholar 

  53. Truscott, A., Strecker, K., McAlexander, W., Partridge, G. & Hulet, R. G. Observation of Fermi pressure in a gas of trapped atoms. Science 291, 2570–2572 (2001).

    Article  ADS  Google Scholar 

  54. Tammuz, N. et al. Can a Bose gas be saturated? Phys. Rev. Lett. 106, 230401 (2011).

    Article  ADS  Google Scholar 

  55. Kothari, D. S. & Srivasava, B. N. Joule–Thomson effect and quantum statistics. Nature 140, 970–971 (1937).

    Article  ADS  Google Scholar 

  56. Tisza, L. Transport phenomena in helium II. Nature 141, 913 (1938).

    Article  ADS  Google Scholar 

  57. Landau, L. D. The theory of superfluidity of helium II. Phys. Rev. 60, 356–358 (1941).

    Article  ADS  MATH  Google Scholar 

  58. Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional system possessing a continous symmetry group - II. Quantum systems. Sov. Phys. JETP 34, 610 (1971).

    ADS  MathSciNet  Google Scholar 

  59. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two dimensional systems. J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  60. Nelson, D. R. & Kosterlitz, J. M. Universal jump in the superfluid density of two-dimensional superfluids. Phys. Rev. Lett. 39, 1201–1205 (1977).

    Article  ADS  Google Scholar 

  61. Luick, N. et al. An ideal Josephson junction in an ultracold two-dimensional Fermi gas. Science 369, 89–91 (2020).

    Article  ADS  Google Scholar 

  62. Sobirey, L. et al. Observation of superfluidity in a strongly correlated two-dimensional Fermi gas. Science 372, 844–846 (2021).

    Article  ADS  Google Scholar 

  63. Gauthier, G. et al. Quantitative acoustic models for superfluid circuits. Phys. Rev. Lett. 123, 260402 (2019).

    Article  ADS  Google Scholar 

  64. Gotlibovych, I. et al. Observing properties of an interacting homogeneous Bose–Einstein condensate: Heisenberg-limited momentum spread, interaction energy, and free-expansion dynamics. Phys. Rev. A 89, 061604 (2014).

    Article  ADS  Google Scholar 

  65. Lopes, R. et al. Quasiparticle energy in a strongly interacting homogeneous Bose–Einstein condensate. Phys. Rev. Lett. 118, 210401 (2017).

    Article  ADS  Google Scholar 

  66. Mukherjee, B. et al. Spectral response and contact of the unitary Fermi gas. Phys. Rev. Lett. 122, 203402 (2019).

    Article  ADS  Google Scholar 

  67. Yan, Z. et al. Boiling a unitary Fermi liquid. Phys. Rev. Lett. 122, 093401 (2019).

    Article  ADS  Google Scholar 

  68. Zou, Y.-Q. et al. Magnetic dipolar interaction between hyperfine clock states in a planar alkali Bose gas. Phys. Rev. Lett. 125, 233604 (2020).

    Article  ADS  Google Scholar 

  69. Zou, Y. et al. Tan’s two-body contact across the superfluid transition of a planar Bose gas. Nat. Commun. 12, 760 (2021).

    Article  ADS  Google Scholar 

  70. Sagi, Y., Drake, T. E., Paudel, R. & Jin, D. S. Measurement of the homogeneous contact of a unitary Fermi gas. Phys. Rev. Lett. 109, 220402 (2012).

    Article  ADS  Google Scholar 

  71. Sagi, Y., Drake, T. E., Paudel, R., Chapurin, R. & Jin, D. S. Breakdown of the Fermi–liquid description for strongly interacting fermions. Phys. Rev. Lett. 114, 075301 (2015).

    Article  ADS  Google Scholar 

  72. Ota, M., Tajima, H., Hanai, R., Inotani, D. & Ohashi, Y. Local photoemission spectra and effects of spatial inhomogeneity in the BCS-BEC-crossover regime of a trapped ultracold Fermi gas. Phys. Rev. A 95, 053623 (2017).

    Article  ADS  Google Scholar 

  73. Carcy, C. et al. Contact and sum rules in a near-uniform Fermi gas at unitarity. Phys. Rev. Lett. 122, 203401 (2019).

    Article  ADS  Google Scholar 

  74. Kozuma, M. et al. Coherent splitting of Bose–Einstein condensed atoms with optically induced Bragg diffraction. Phys. Rev. Lett. 82, 871–875 (1999).

    Article  ADS  Google Scholar 

  75. Stenger, J. et al. Bragg spectroscopy of a Bose–Einstein condensate. Phys. Rev. Lett. 82, 4569–4573 (1999).

    Article  ADS  Google Scholar 

  76. Zakharov, V. E., L’vov, V. S. & Falkovich, G. Kolmogorov Spectra of Turbulence (Springer, 1992).

  77. Navon, N. et al. Synthetic dissipation and cascade fluxes in a turbulent quantum gas. Science 366, 382–385 (2019).

    Article  Google Scholar 

  78. Gauthier, G. et al. Giant vortex clusters in a two-dimensional quantum fluid. Science 364, 1264–1267 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Johnstone, S. P. et al. Evolution of large-scale flow from turbulence in a two-dimensional superfluid. Science 364, 1267–1271 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Stockdale, O. R. et al. Universal dynamics in the expansion of vortex clusters in a dissipative two-dimensional superfluid. Phys. Rev. Res. 2, 033138 (2020).

    Article  Google Scholar 

  81. Reeves, M. T. et al. Emergence of off-axis equilibria in a quantum vortex gas. Preprint at https://arxiv.org/abs/2010.10049 (2020).

  82. Onsager, L. Statistical hydrodynamics. Nuovo Cimento 6, 279–287 (1949).

    Article  MathSciNet  Google Scholar 

  83. Kwon, W. J. et al. Sound emission and annihilations in a programmable quantum vortex collider. Preprint at https://arxiv.org/abs/2105.15180 (2021).

  84. Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A 9, 1387–1398 (1976).

    Article  ADS  MATH  Google Scholar 

  85. Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985).

    Article  ADS  Google Scholar 

  86. del Campo, A. & Zurek, W. H. Universality of phase transition dynamics: topological defects from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).

    Article  Google Scholar 

  87. Beugnon, J. & Navon, N. Exploring the Kibble–Zurek mechanism with homogeneous Bose gases. J. Phys. B 50, 022002 (2017).

    Article  ADS  Google Scholar 

  88. Aidelsburger, M. et al. Relaxation dynamics in the merging of n independent condensates. Phys. Rev. Lett. 119, 190403 (2017).

    Article  ADS  Google Scholar 

  89. Schweigler, T. et al. Decay and recurrence of non-Gaussian correlations in a quantum many-body system. Nat. Phys. 17, 559–563 (2021).

    Article  Google Scholar 

  90. Glidden, J. A. P. et al. Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium. Nat. Phys. 17, 457–461 (2021).

    Article  Google Scholar 

  91. Eigen, C. et al. Universal scaling laws in the dynamics of a homogeneous unitary Bose gas. Phys. Rev. Lett. 119, 250404 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  92. Eigen, C. et al. Universal prethermal dynamics of Bose gases quenched to unitarity. Nature 563, 221–224 (2018).

    Article  ADS  Google Scholar 

  93. Bakkali-Hassani, B. et al. Realization of a Townes soliton in a two-component planar Bose gas. Phys. Rev. Lett. 127, 023603 (2021).

    Article  ADS  Google Scholar 

  94. Chen and C.-L. Hung, C.-A. Observation of universal quench dynamics and Townes soliton formation from modulational instability in two-dimensional Bose gases. Phys. Rev. Lett. 125, 250401 (2020).

    Article  ADS  Google Scholar 

  95. Chen, C.-A. & Hung, C.-L. Observation of scale invariance in two-dimensional matter-wave Townes solitons. Phys. Rev. Lett. 127, 023604 (2021).

    Article  ADS  Google Scholar 

  96. Zou, Y.-Q. et al. Optical control of the density and spin spatial profiles of a planar Bose gas. J. Phys. B 54, 08LT01 (2021).

    Article  Google Scholar 

  97. Zhang, Z., Chen, L., Yao, K. & Chin, C. Transition from an atomic to a molecular Bose–Einstein condensate. Nature 592, 708–711 (2021).

    Article  ADS  Google Scholar 

  98. Eigen, C. et al. Observation of weak collapse in a Bose–Einstein condensate. Phys. Rev. X 6, 041058 (2016).

    Google Scholar 

  99. Clark, L. W., Gaj, A., Feng, L. & Chin, C. Collective emission of matter-wave jets from driven Bose–Einstein condensates. Nature 551, 356–359 (2017).

    Article  ADS  Google Scholar 

  100. Fu, H. et al. Density waves and jet emission asymmetry in Bose fireworks. Phys. Rev. Lett. 121, 243001 (2018).

    Article  ADS  Google Scholar 

  101. Zhang, Z., Yao, K.-X., Feng, L., Hu, J. & Chin, C. Pattern formation in a driven Bose–Einstein condensate. Nat. Phys. 16, 652–656 (2020).

    Article  Google Scholar 

  102. Chen, C.-A., Khlebnikov, S. & Hung, C.-L. Observation of quasiparticle pair production and quantum entanglement in atomic quantum gases quenched to an attractive interaction. Phys. Rev. Lett. 127, 060404 (2021).

    Article  ADS  Google Scholar 

  103. Mathey, L. & Polkovnikov, A. Light cone dynamics and reverse Kibble–Zurek mechanism in two-dimensional superfluids following a quantum quench. Phys. Rev. A 81, 033605 (2010).

    Article  ADS  Google Scholar 

  104. Jelić, A. & Cugliandolo, L. F. Quench dynamics of the 2d XY model. J. Stat. Mech. 2011, 02032 (2011).

    Article  Google Scholar 

  105. Mathey, L., Günter, K. J., Dalibard, J. & Polkovnikov, A. Dynamic Kosterlitz–Thouless transition in two-dimensional Bose mixtures of ultracold atoms. Phys. Rev. A 95, 053630 (2017).

    Article  ADS  Google Scholar 

  106. Comaron, P., Larcher, F., Dalfovo, F. & Proukakis, N. P. Quench dynamics of an ultracold two-dimensional Bose gas. Phys. Rev. A 100, 033618 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  107. Brown, K., Bland, T., Comaron, P. & Proukakis, N. P. Periodic quenches across the Berezinskii-Kosterlitz–Thouless phase transition. Phys. Rev. Res. 3, 013097 (2021).

    Article  Google Scholar 

  108. Fialko, O., Opanchuk, B., Sidorov, A. I., Drummond, P. D. & Brand, J. Fate of the false vacuum: towards realization with ultra-cold atoms. Europhys. Lett. 110, 56001 (2015).

    Article  ADS  Google Scholar 

  109. Braden, J., Johnson, M. C., Peiris, H. V. & Weinfurtner, S. Towards the cold atom analog false vacuum. J. High Energy Phys. 2018, 14 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  110. Braden, J., Johnson, M. C., Peiris, H. V., Pontzen, A. & Weinfurtner, S. Nonlinear dynamics of the cold atom analog false vacuum. J. High Energy Phys. 2019, 174 (2019).

    Article  ADS  MATH  Google Scholar 

  111. Billam, T. P., Gregory, R., Michel, F. & Moss, I. G. Simulating seeded vacuum decay in a cold atom system. Phys. Rev. D 100, 065016 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  112. Goldman, N., Budich, J. C. & Zoller, P. Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12, 639–645 (2016).

    Article  Google Scholar 

  113. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  114. Fletcher, R. J. et al. Geometric squeezing into the lowest Landau level. Science 372, 1318–1322 (2021).

    Article  ADS  Google Scholar 

  115. Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. Stuhl, B. K., Lu, H. I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. Chalopin, T. et al. Probing chiral edge dynamics and bulk topology of a synthetic Hall system. Nat. Phys. 16, 1017–1021 (2020).

    Article  Google Scholar 

  118. Roccuzzo, S. M., Stringari, S. & Recati, A. Supersolid edge and bulk phases of a dipolar quantum gas in a box. Preprint at https://arxiv.org/abs/2104.01068 (2021).

  119. Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).

    Google Scholar 

  120. Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    Article  ADS  Google Scholar 

  121. Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    Google Scholar 

  122. Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357–361 (2021).

    Article  ADS  Google Scholar 

  123. Hertkorn, J. et al. Supersolidity in two-dimensional trapped dipolar droplet arrays. Phys. Rev. Lett. 127, 155301 (2021).

    Article  ADS  Google Scholar 

  124. Böttcher, F. et al. New states of matter with fine-tuned interactions: quantum droplets and dipolar supersolids. Rep. Progr. Phys. 84, 012403 (2021).

    Article  ADS  Google Scholar 

  125. Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017).

    Article  ADS  Google Scholar 

  126. Gall, M., Wurz, N., Samland, J., Chan, C. F. & Köhl, M. Competing magnetic orders in a bilayer Hubbard model with ultracold atoms. Nature 589, 40–43 (2021).

    Article  ADS  Google Scholar 

  127. Fulde, P. & Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550–A563 (1964).

    Article  ADS  Google Scholar 

  128. Larkin, A. I. & Ovchinnikov, Y. N. Nonuniform state of superconductors. Zh. Eksp. Teor. Fiz. 47, 1136–1146 (1964).

    Google Scholar 

  129. Kinnunen, J. J., Baarsma, J. E., Martikainen, J.-P. & Törmä, P. The Fulde–Ferrell–Larkin–Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review. Rep. Progr. Phys. 81, 046401 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  130. Lee, T. D. & Yang, C. N. Many-body problem in quantum mechanics and quantum statistical mechanics. Phys. Rev. 105, 1119–1120 (1957).

    Article  ADS  Google Scholar 

  131. Reppy, J. D. et al. Density dependence of the transition temperature in a homogeneous Bose–Einstein condensate. Phys. Rev. Lett. 84, 2060–2063 (2000).

    Article  ADS  Google Scholar 

  132. Arnold, P. & Moore, G. BEC transition temperature of a dilute homogeneous imperfect Bose gas. Phys. Rev. Lett. 87, 120401 (2001).

    Article  ADS  Google Scholar 

  133. Kashurnikov, V. A., Prokof’ev, N. V. & Svistunov, B. V. Critical temperature shift in weakly interacting Bose gas. Phys. Rev. Lett. 87, 120402 (2001).

    Article  ADS  Google Scholar 

  134. Andersen, J. O. Theory of the weakly interacting Bose gas. Rev. Mod. Phys. 76, 599–639 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. Holzmann, M., Fuchs, J.-N., Baym, G. A., Blaizot, J.-P. & Laloë, F. Bose Einstein transition temperature in a dilute repulsive gas. C. R. Phys. 5, 21–37 (2004).

    Article  ADS  Google Scholar 

  136. Ensher, J. R., Jin, D. S., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Bose–Einstein condensation in a dilute gas: measurement of energy and ground-state occupation. Phys. Rev. Lett. 77, 4984–4987 (1996).

    Article  ADS  Google Scholar 

  137. Gerbier, F. et al. Critical temperature of a trapped, weakly interacting Bose gas. Phys. Rev. Lett. 92, 030405 (2004).

    Article  ADS  Google Scholar 

  138. Meppelink, R. et al. Thermodynamics of Bose–Einstein-condensed clouds using phase-contrast imaging. Phys. Rev. A 81, 053632 (2010).

    Article  ADS  Google Scholar 

  139. Smith, R. P., Campbell, R. L. D., Tammuz, N. & Hadzibabic, Z. Effects of interactions on the critical temperature of a trapped Bose gas. Phys. Rev. Lett. 106, 250403 (2011a).

    Article  ADS  Google Scholar 

  140. Smith, R. P., Tammuz, N., Campbell, R. L. D., Holzmann, M. & Hadzibabic, Z. Condensed fraction of an atomic Bose gas induced by critical correlations. Phys. Rev. Lett. 107, 190403 (2011).

    Article  ADS  Google Scholar 

  141. Giorgini, S., Pitaevskii, L. P. & Stringari, S. Condensate fraction and critical temperature of a trapped interacting Bose gas. Phys. Rev. A 54, R4633–R4636 (1996).

    Article  ADS  Google Scholar 

  142. Shkedrov, C., Menashes, M., Ness, G., Vainbaum, A. & Sagi, Y. Absence of heating in a uniform Fermi gas created by periodic driving. Preprint at https://arxiv.org/abs/2102.09506 (2021).

  143. Becker, D. et al. Space-borne Bose–Einstein condensation for precision interferometry. Nature 562, 391–395 (2018).

    Article  ADS  Google Scholar 

  144. Aveline, D. C. et al. Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature 582, 193–197 (2020).

    Article  ADS  Google Scholar 

  145. Frye, K. et al. The Bose–Einstein condensate and cold atom laboratory. EPJ Quantum Technol. 8, 1–38 (2021).

    Article  Google Scholar 

  146. Huang, K. Statistical Mechanics (Wiley, 1987).

    MATH  Google Scholar 

  147. Drake, T. E. et al. Direct observation of the Fermi surface in an ultracold atomic gas. Phys. Rev. A 86, 031601 (2012).

    Article  ADS  Google Scholar 

  148. Donner, T. et al. Critical behavior of a trapped interacting Bose gas. Science 315, 1556–1558 (2007).

    Article  ADS  Google Scholar 

  149. Campostrini, M., Hasenbusch, M., Pelissetto, A. & Vicari, E. Theoretical estimates of the critical exponents of the superfluid transition in 4He by lattice methods. Phys. Rev. B 74, 144506 (2006).

    Article  ADS  Google Scholar 

  150. Burovski, E., Prokof’ev, N., Svistunov, B. & Troyer, M. Critical temperature and thermodynamics of attractive fermions at unitarity. Phys. Rev. Lett. 96, 160402 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Eigen for help in the preparation of the figures and critical reading of the manuscript. We also thank R. Lopes and S. Nascimbene for comments on the manuscript, and M. Zwierlein, P. Patel, B. Mukherjee, J. Beugnon, J. Dalibard, R. Saint-Jalm, H. Biss, T. Lompe and H. Moritz for sharing their data. This work was supported by the EPSRC (grant numbers EP/N011759/1, EP/P009565/1 and EP/T019913/1), ERC (QBox), QuantERA (NAQUAS, EPSRC grant number EP/R043396/1), NSF CAREER (grant number 1945324) and DARPA (grant number 00010372). N.N. acknowledges support from the David and Lucile Packard Foundation, and the Alfred P. Sloan Foundation. R.P.S. acknowledges support from the Royal Society. Z.H. acknowledges support from the Royal Society Wolfson Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Hadzibabic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navon, N., Smith, R.P. & Hadzibabic, Z. Quantum gases in optical boxes. Nat. Phys. 17, 1334–1341 (2021). https://doi.org/10.1038/s41567-021-01403-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01403-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing