Abstract
Lanthanide atoms have an unusual electron configuration, with a partially filled shell of f orbitals. This leads to a set of characteristic properties, including large numbers of optical transitions with widely varying wavelengths and transition strengths, anisotropic interaction properties between atoms and with light, and a large magnetic moment and spin space present in the ground state, that enable enhanced control over ultracold atoms and their interactions. These features, in turn, enable new forms of control as well as novel many-body phenomena. Microkelvin temperatures can be reached by narrow-line laser cooling and evaporative cooling through universal dipolar scattering. The properties and tunability of the interatomic interactions have enabled observations of a rotonic dispersion relation, self-bound liquid-like droplets stabilized by quantum fluctuations and supersolid states. Here we describe how the unusual level structure of lanthanide atoms leads to these key features and provide a brief and necessarily partial overview of experimental progress in this rapidly developing field.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Chin, C., Grimm, R., Julienne, P. S. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).
Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).
Gallagher, T. F. Rydberg Atoms 3 (Cambridge Univ. Press, 2005).
Raimond, J. M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001).
Kimble, H. J. Strong interactions of single atoms and photons in cavity qed. Phys. Scr. 1998, 127 (1998).
Kotochigova, S. Controlling interactions between highly magnetic atoms with feshbach resonances. Rep. Prog. Phys. 77, 093901 (2014).
Tiesinga, E., Kłos, J., Li, M., Petrov, A. & Kotochigova, S. Relativistic aspects of orbital and magnetic anisotropies in the chemical bonding and structure of lanthanide molecules. New J. Phys. 23, 085007 (2021).
Guo, M. & Pfau, T. A new state of matter of quantum droplets. Front. Phys. 16, 32202 (2021).
Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).
Wybourne, B. G. & Smentek, L. Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions (CRC, 2007).
Golovizin, A. et al. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift. Nat. Commun. 10, 1724 (2019).
Petersen, N., Trümper, M. & Windpassinger, P. Spectroscopy of the 1,001-nm transition in atomic dysprosium. Phys. Rev. A 101, 042502 (2020).
Patscheider, A. et al. Observation of a narrow inner-shell orbital transition in atomic erbium at 1299 nm. Phys. Rev. Res. 3, 033256 (2021).
Ban, H. Y., Jacka, M., Hanssen, J. L., Reader, J. & McClelland, J. J. Laser cooling transitions in atomic erbium. Opt. Express 13, 3185–3195 (2005).
Honda, K. et al. Magneto-optical trapping of Yb atoms and a limit on the branching ratio of the 1P1 state. Phys. Rev. A 59, R934–R937 (1999).
Katori, H., Ido, T., Isoya, Y. & Kuwata-Gonokami, M. Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 82, 1116–1119 (1999).
Kuwamoto, T., Honda, K., Takahashi, Y. & Yabuzaki, T. Magneto-optical trapping of Yb atoms using an intercombination transition. Phys. Rev. A 60, R745–R748 (1999).
McClelland, J. J. & Hanssen, J. L. Laser cooling without repumping: a magneto-optical trap for erbium atoms. Phys. Rev. Lett. 96, 143005 (2006).
Berglund, A. J., Lee, S. A. & McClelland, J. J. Sub-Doppler laser cooling and magnetic trapping of erbium. Phys. Rev. A 76, 053418 (2007).
Frisch, A. et al. Narrow-line magneto-optical trap for erbium. Phys. Rev. A 85, 051401 (2012).
Seon, B. et al. Efficient production of a narrow-line erbium magneto-optical trap with two-stage slowing. Phys. Rev. A 102, 013319 (2020).
Leefer, N. et al. Transverse laser cooling of a thermal atomic beam of dysprosium. Phys. Rev. A 81, 043427 (2010).
Youn, S. H., Lu, M., Ray, U. & Lev, B. L. Dysprosium magneto-optical traps. Phys. Rev. A 82, 043425 (2010).
Lu, M., Youn, S. H. & Lev, B. L. Trapping ultracold dysprosium: a highly magnetic gas for dipolar physics. Phys. Rev. Lett. 104, 063001 (2010).
Lunden, W. et al. Enhancing the capture velocity of a Dy magneto-optical trap with two-stage slowing. Phys. Rev. A 101, 063403 (2020).
Miao, J., Hostetter, J., Stratis, G. & Saffman, M. Magneto-optical trapping of holmium atoms. Phys. Rev. A 89, 041401 (2014).
Sukachev, D. et al. Magneto-optical trap for thulium atoms. Phys. Rev. A 82, 011405 (2010).
Vishnyakova, G. A. et al. Two-stage laser cooling and optical trapping of thulium atoms. Laser Phys. 24, 074018 (2014).
Inoue, R., Miyazawa, Y. & Kozuma, M. Magneto-optical trapping of optically pumped metastable europium. Phys. Rev. A 97, 061607 (2018).
Ilzhöfer, P. et al. Two-species five-beam magneto-optical trap for erbium and dysprosium. Phys. Rev. A 97, 023633 (2018).
Lu, M., Burdick, N. Q., Youn, S. H. & Lev, B. L. Strongly dipolar Bose-Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011).
Aikawa, K. et al. Bose-Einstein condensation of erbium. Phys. Rev. Lett. 108, 210401 (2012).
Lu, M., Burdick, N. Q. & Lev, B. L. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett. 108, 215301 (2012).
Aikawa, K. et al. Reaching Fermi degeneracy via universal dipolar scattering. Phys. Rev. Lett. 112, 010404 (2014).
Davletov, E. T. et al. Machine learning for achieving Bose-Einstein condensation of thulium atoms. Phys. Rev. A 102, 011302 (2020).
Trautmann, A. et al. Dipolar quantum mixtures of erbium and dysprosium atoms. Phys. Rev. Lett. 121, 213601 (2018).
Ravensbergen, C. et al. Production of a degenerate Fermi-Fermi mixture of dysprosium and potassium atoms. Phys. Rev. A 98, 063624 (2018).
Connolly, C. B., Au, Y. S., Doret, S. C., Ketterle, W. & Doyle, J. M. Large spin relaxation rates in trapped submerged-shell atoms. Phys. Rev. A 81, 010702 (2010).
Berglund, A. J., Hanssen, J. L. & McClelland, J. J. Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms. Phys. Rev. Lett. 100, 113002 (2008).
Lu, M., Youn, S. H. & Lev, B. L. Spectroscopy of a narrow-line laser-cooling transition in atomic dysprosium. Phys. Rev. A 83, 012510 (2011).
Maier, T., Kadau, H., Schmitt, M., Griesmaier, A. & Pfau, T. Narrow-line magneto-optical trap for dysprosium atoms. Opt. Lett. 39, 3138–3141 (2014).
Dreon, D. et al. Optical cooling and trapping of highly magnetic atoms: the benefits of a spontaneous spin polarization. J. Phys. B 50, 065005 (2017).
Phelps, G. A. et al. Sub-second production of a quantum degenerate gas. Preprint at https://arxiv.org/abs/2007.10807 (2020).
Griesmaier, A., Werner, J., Hensler, S., Stuhler, J. & Pfau, T. Bose-Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005).
Lahaye, T. et al. d-wave collapse and explosion of a dipolar Bose-Einstein condensate. Phys. Rev. Lett. 101, 080401 (2008).
Lahaye, T. et al. Strong dipolar effects in a quantum ferrofluid. Nature 448, 672–675 (2007).
Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).
Wolfgang, W. & Zwierlein, M. W. Making, probing and understanding ultracold Fermi gases. La Rivista del Nuovo Cimento 31, 247–422 (2008).
Baranov, M. A. Theoretical progress in many-body physics with ultracold dipolar gases. Phys. Rep. 464, 71–111 (2008).
Bohn, J., Cavagnero, M. & Ticknor, C. Quasi-universal dipolar scattering in cold and ultracold gases. New J. Phys. 11, 055039 (2009).
Aikawa, K. et al. Observation of Fermi surface deformation in a dipolar quantum gas. Science 345, 1484–1487 (2014).
Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).
Kinoshita, T., Wenger, T. & Weiss, D. S. A quantum Newton’s cradle. Nature 440, 900–903 (2006).
Tang, Y. et al. Thermalization near integrability in a dipolar quantum Newton’s cradle. Phys. Rev. X 8, 021030 (2018).
Kao, W., Li, K.-Y., Lin, K.-Y., Gopalakrishnan, S. & Lev, B. L. Topological pumping of a 1D dipolar gas into strongly correlated prethermal states. Science 371, 296–300 (2021).
Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).
Dutta, O. et al. Non-standard Hubbard models in optical lattices: a review. Rep. Prog. Phys. 78, 066001 (2015).
Baier, S. et al. Extended Bose-Hubbard models with ultracold magnetic atoms. Science 352, 201–205 (2016).
Zhang, R., Cheng, Y., Zhai, H. & Zhang, P. Orbital Feshbach resonance in alkali-earth atoms. Phys. Rev. Lett. 115, 135301 (2015).
Höfer, M. et al. Observation of an orbital interaction-induced Feshbach resonance in 173Yb. Phys. Rev. Lett. 115, 265302 (2015).
Pagano, G. et al. Strongly interacting gas of two-electron fermions at an orbital Feshbach resonance. Phys. Rev. Lett. 115, 265301 (2015).
Petrov, A., Tiesinga, E. & Kotochigova, S. Anisotropy induced Feshbach resonances in a quantum dipolar gas of magnetic atoms. Phys. Rev. Lett. 109, 103002 (2012).
Frisch, A. et al. Quantum chaos in ultracold collisions of gas-phase erbium atoms. Nature 507, 475–479 (2014).
Baumann, K., Burdick, N. Q., Lu, M. & Lev, B. L. Observation of low-field Fano-Feshbach resonances in ultracold gases of dysprosium. Phys. Rev. A 89, 020701 (2014).
Maier, T. et al. Emergence of chaotic scattering in ultracold Er and Dy. Phys. Rev. X 5, 041029 (2015).
Khlebnikov, V. A. et al. Random to chaotic statistic transformation in low-field Fano-Feshbach resonances of cold thulium atoms. Phys. Rev. Lett. 123, 213402 (2019).
Durastante, G. et al. Feshbach resonances in an erbium-dysprosium dipolar mixture. Phys. Rev. A 102, 033330 (2020).
Frisch, A. et al. Ultracold dipolar molecules composed of strongly magnetic atoms. Phys. Rev. Lett. 115, 203201 (2015).
Maier, T. et al. Broad universal Feshbach resonances in the chaotic spectrum of dysprosium atoms. Phys. Rev. A 92, 060702 (2015).
Lucioni, E. et al. Dysprosium dipolar Bose-Einstein condensate with broad Feshbach resonances. Phys. Rev. A 97, 060701 (2018).
Baier, S. et al. Realization of a strongly interacting Fermi gas of dipolar atoms. Phys. Rev. Lett. 121, 093602 (2018).
Kotochigova, S. Dispersion interactions and reactive collisions of ultracold polar molecules. New J. Phys. 12, 073041 (2010).
Deutsch, I. H. & Jessen, P. S. Quantum-state control in optical lattices. Phys. Rev. A 57, 1972 (1998).
Dzuba, V. A., Flambaum, V. V. & Lev, B. L. Dynamic polarizabilities and magic wavelengths for dysprosium. Phys. Rev. A 83, 032502 (2011).
Lepers, M., Wyart, J.-F. & Dulieu, O. Anisotropic optical trapping of ultracold erbium atoms. Phys. Rev. A 89, 022505 (2014).
Li, H., Wyart, J. F., Dulieu, O., Nascimbène, S. & Lepers, M. Optical trapping of ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities and van der Waals C6 coefficients. J. Phys. B 50, 014005 (2017).
Li, H., Wyart, J.-F, Dulieu, O. & Lepers, M. Anisotropic optical trapping as a manifestation of the complex electronic structure of ultracold lanthanide atoms: the example of holmium. Phys. Rev. A 95, 062508 (2017).
Golovizin, A. A. et al. Methods for determining the polarisability of the fine structure levels in the ground state of the thulium atom. Quantum Electron. 47, 479 (2017).
Becher, J. H. et al. Anisotropic polarizability of erbium atoms. Phys. Rev. A 97, 012509 (2018).
Kao, W., Tang, Y., Burdick, N. Q. & Lev, B. L. Anisotropic dependence of tune-out wavelength near Dy 741-nm transition. Opt. Express 25, 3411–3419 (2017).
Ravensbergen, C. et al. Accurate determination of the dynamical polarizability of dysprosium. Phys. Rev. Lett. 120, 223001 (2018).
Chalopin, T. et al. Anisotropic light shift and magic polarization of the intercombination line of dysprosium atoms in a far-detuned dipole trap. Phys. Rev. A 98, 040502 (2018).
Kreyer, M. et al. Measurement of the dynamic polarizability of Dy atoms near the 626-nm intercombination line. Preprint at https://arxiv.org/abs/2103.11867 (2021).
Tsyganok, V. V., Pershin, D. A., Davletov, E. T., Khlebnikov, V. A. & Akimov, A. V. Scalar, tensor and vector polarizability of Tm atoms in a 532-nm dipole trap. Phys. Rev. A 100, 042502 (2019).
Lepoutre, S. et al. Out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system. Nat. Commun. 10, 1714 (2019).
Patscheider, A. et al. Controlling dipolar exchange interactions in a dense three-dimensional array of large-spin fermions. Phys. Rev. Res. 2, 023050 (2020).
Burdick, N. Q., Tang, Y. & Lev, B. L. Long-lived spin-orbit-coupled degenerate dipolar Fermi gas. Phys. Rev. X 6, 031022 (2016).
Chalopin, T. et al. Probing chiral edge dynamics and bulk topology of a synthetic Hall system. Nat. Phys. 16, 1017–1021 (2020).
Chalopin, T. et al. Quantum-enhanced sensing using non-classical spin states of a highly magnetic atom. Nat. Commun. 9, 4955 (2018).
Satoor, T. et al. Partitioning dysprosium’s electronic spin to reveal entanglement in non-classical states. Preprint at https://arxiv.org/abs2104.14389 (2021).
Böttcher, F. et al. New states of matter with fine-tuned interactions: quantum droplets and dipolar supersolids. Rep. Prog. Phys. 84, 012403 (2021).
Santos, L., Shlyapnikov, G. V. & Lewenstein, M. Roton-maxon spectrum and stability of trapped dipolar Bose-Einstein condensates. Phys. Rev. Lett. 90, 250403 (2003).
Wilson, R. M., Ronen, S., Bohn, J. L. & Pu, H. Manifestations of the roton mode in dipolar Bose-Einstein condensates. Phys. Rev. Lett. 100, 245302 (2008).
Bisset, R. N., Baillie, D. & Blakie, P. B. Roton excitations in a trapped dipolar Bose-Einstein condensate. Phys. Rev. A 88, 043606 (2013).
Chomaz, L. et al. Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442–446 (2018).
Petter, D. et al. Probing the roton excitation spectrum of a stable dipolar Bose gas. Phys. Rev. Lett. 122, 183401 (2019).
Schmidt, J.-N. et al. Roton excitations in an oblate dipolar quantum gas. Phys. Rev. Lett. 126, 193002 (2021).
Kadau, H. et al. Observing the Rosensweig instability of a quantum ferrofluid. Nature 530, 194–197 (2016).
Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016).
Wächtler, F. & Santos, L. Quantum filaments in dipolar Bose-Einstein condensates. Phys. Rev. A 93, 061603 (2016).
Baillie, D., Wilson, R. M., Bisset, R. N. & Blakie, P. B. Self-bound dipolar droplet: a localized matter wave in free space. Phys. Rev. A 94, 021602 (2016).
Wächtler, F. & Santos, L. Ground-state properties and elementary excitations of quantum droplets in dipolar Bose-Einstein condensates. Phys. Rev. A 94, 043618 (2016).
Schmitt, M., Wenzel, M., Böttcher, F., Ferrier-Barbut, I. & Pfau, T. Self-bound droplets of a dilute magnetic quantum liquid. Nature 539, 259–262 (2016).
Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).
Baillie, D. & Blakie, P. B. Droplet crystal ground states of a dipolar Bose gas. Phys. Rev. Lett. 121, 195301 (2018).
Böttcher, F. et al. Dilute dipolar quantum droplets beyond the extended Gross-Pitaevskii equation. Phys. Rev. Res. 1, 033088 (2019).
Gross, E. P. Unified theory of interacting bosons. Phys. Rev. 106, 161–162 (1957).
Boninsegni, M. & Prokof’ev, N. V. Colloquium: supersolids: what and where are they? Rev. Mod. Phys. 84, 759–776 (2012).
Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).
Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).
Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).
Bohn, J. L., Wilson, R. M. & Ronen, S. How does a dipolar Bose-Einstein condensate collapse? Laser Phys. 19, 547–549 (2009).
Parker, N. G., Ticknor, C., Martin, A. M. & O’Dell, D. H. J. Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate. Phys. Rev. A 79, 013617 (2009).
Wenzel, M., Böttcher, F., Langen, T., Ferrier-Barbut, I. & Pfau, T. Striped states in a many-body system of tilted dipoles. Phys. Rev. A 96, 053630 (2017).
Petrov, D. S. Quantum mechanical stabilization of a collapsing Bose-Bose mixture. Phys. Rev. Lett. 115, 155302 (2015).
Cabrera, C. et al. Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science 359, 301–304 (2018).
Semeghini, G. et al. Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett. 120, 235301 (2018).
Lee, T. D., Huang, K. & Yang, C. N. Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135–1145 (1957).
Lima, A. R. P. & Pelster, A. Quantum fluctuations in dipolar Bose gases. Phys. Rev. A 84, 041604 (2011).
Lu, Z.-K., Li, Y., Petrov, D. S. & Shlyapnikov, G. V. Stable dilute supersolid of two-dimensional dipolar bosons. Phys. Rev. Lett. 115, 075303 (2015).
Roccuzzo, S. M. & Ancilotto, F. Supersolid behavior of a dipolar Bose-Einstein condensate confined in a tube. Phys. Rev. A 99, 041601 (2019).
Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Sov. Phys. JETP 29, 1107 (1969).
Chester, G. V. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).
Leggett, A. J. Can a solid be ‘superfluid’? Phys. Rev. Lett. 25, 1543–1546 (1970).
Natale, G. et al. Excitation spectrum of a trapped dipolar supersolid and its experimental evidence. Phys. Rev. Lett. 123, 050402 (2019).
Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).
Hertkorn, J. et al. Fate of the amplitude mode in a trapped dipolar supersolid. Phys. Rev. Lett. 123, 193002 (2019).
Guo, M. et al. The low-energy Goldstone mode in a trapped dipolar supersolid. Nature 574, 386–389 (2019).
Tanzi, L. et al. Evidence of superfluidity in a dipolar supersolid from nonclassical rotational inertia. Science 371, 1162–1165 (2021).
Sohmen, M. et al. Birth, life, and death of a dipolar supersolid. Phys. Rev. Lett. 126, 233401 (2021).
Ilzhöfer, P. et al. Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms. Nat. Phys. 17, 356–361 (2021).
Zhang, Y.-C., Pohl, T. & Maucher, F. Phases of supersolids in confined dipolar Bose-Einstein condensates. Preprint at https://arxiv.org/abs/2103.12688 (2021).
Hertkorn, J. et al. Supersolidity in two-dimensional trapped dipolar droplet arrays. Preprint at https://arxiv.org/abs/2103.09752 (2021).
Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357–361 (2021).
Roccuzzo, S. M., Gallemí, A., Recati, A. & Stringari, S. Rotating a supersolid dipolar gas. Phys. Rev. Lett. 124, 045702 (2020).
Ancilotto, F., Barranco, M., Pi, M. & Reatto, L. Vortex properties in the extended supersolid phase of dipolar Bose-Einstein condensates. Phys. Rev. A 103, 033314 (2021).
Gallemí, A., Roccuzzo, S. M., Stringari, S. & Recati, A. Quantized vortices in dipolar supersolid Bose-Einstein-condensed gases. Phys. Rev. A 102, 023322 (2020).
Hertkorn, J. et al. Pattern formation in quantum ferrofluids: from supersolids to superglasses. Preprint at https://arxiv.org/abs/2103.13930 (2021).
Bland, T. et al. Two-dimensional supersolidity in a circular trap. Preprint at https://arxiv.org/abs/2107.06680 (2021).
Trautmann, A. et al. Spectroscopy of Rydberg states in erbium using electromagnetically induced transparency. Preprint at https://arxiv.org/abs/2105.00738 (2021).
Mukherjee, R., Millen, J., Nath, R., Jones, M. & Pohl, T. Many-body physics with alkaline-earth Rydberg lattices. J. Phys. B 44, 184010 (2011).
Wilson, J. et al. Trapped arrays of alkaline earth Rydberg atoms in optical tweezers. Preprint at https://arxiv.org/abs/1912.08754 (2019).
Smith, J. C., Baillie, D. & Blakie, P. B. Quantum droplet states of a binary magnetic gas. Phys. Rev. Lett. 126, 025302 (2021).
Bisset, R. N., Peña Ardila, L. A. & Santos, L. Quantum droplets of dipolar mixtures. Phys. Rev. Lett. 126, 025301 (2021).
Ilzhöfer, P. Creation of Dipolar Quantum Mixtures of Erbium and Dysprosium. PhD thesis, Univ. Innsbruck (2020).
Li, M., Tiesinga, E. & Kotochigova, S. Orbital quantum magnetism in spin dynamics of strongly interacting magnetic lanthanide atoms. Phys. Rev. A 97, 053627 (2018).
Acknowledgements
F.F. is financially supported through an ERC consolidator grant (RARE, no. 681432), an NFRI grant (MIRARE, no. ÖAW0600) of the Austrian Academy of Science and a QuantERA grant MAQS from the Austrian Science Fund (FWF no. I4391-N). F.F. acknowledges support from the DFG/FWF via grant no. FOR 2247/PI2790. M.A.N. has received funding as an ESQ Postdoctoral Fellow from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 801110 and the Austrian Federal Ministry of Education, Science and Research (BMBWF).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Norcia, M.A., Ferlaino, F. Developments in atomic control using ultracold magnetic lanthanides. Nat. Phys. 17, 1349–1357 (2021). https://doi.org/10.1038/s41567-021-01398-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-021-01398-7
This article is cited by
-
Apparatus for producing a $$^{168}\hbox {Er}$$ Bose–Einstein condensate
Journal of the Korean Physical Society (2023)
-
Bloch oscillations and matter-wave localization of a dipolar quantum gas in a one-dimensional lattice
Communications Physics (2022)
-
Observation of vortices and vortex stripes in a dipolar condensate
Nature Physics (2022)
-
Spectroscopic probes of quantum gases
Nature Physics (2021)
-
Cold atoms stay cool
Nature Physics (2021)