Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Precision mass measurement of lightweight self-conjugate nucleus 80Zr

Abstract

Protons and neutrons in the atomic nucleus move in shells analogous to the electronic shell structures of atoms. The nuclear shell structure varies as a result of changes in the nuclear mean field with the number of neutrons N and protons Z, and these variations can be probed by measuring the mass differences between nuclei. The N = Z = 40 self-conjugate nucleus 80Zr is of particular interest, as its proton and neutron shell structures are expected to be very similar, and its ground state is highly deformed. Here we provide evidence for the existence of a deformed double-shell closure in 80Zr through high-precision Penning trap mass measurements of 80–83Zr. Our mass values show that 80Zr is substantially lighter, and thus more strongly bound than predicted. This can be attributed to the deformed shell closure at N = Z = 40 and the large Wigner energy. A statistical Bayesian-model mixing analysis employing several global nuclear mass models demonstrates difficulties with reproducing the observed mass anomaly using current theory.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The experimental procedure.
Fig. 2: Comparison of experimental results with theoretical predictions.
Fig. 3: Two-proton shell gap.
Fig. 4: Wigner energy.
Fig. 5: Single-particle energy splitting.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

Our unpublished computer codes used to generate the results reported in this paper and central to its main claims will be made available upon request.

References

  1. National Research Council Nuclear Physics: Exploring the Heart of Matter (The National Academies Press, 2013).

  2. Otsuka, T., Gade, A., Sorlin, O., Suzuki, T. & Utsuno, Y. Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 92, 015002 (2020).

    ADS  Google Scholar 

  3. Eberth, J., Meyer, R. A. & Sistemich, K. Nuclear Structure of the Zirconium Region (Springer, 1988).

  4. Hamilton, J. H. et al. Effects of reinforcing shell gaps in the competition between spherical and highly deformed shapes. J. Phys. G 10, L87–L91 (1984).

    Google Scholar 

  5. Nazarewicz, W., Dudek, J., Bengtsson, R., Bengtsson, T. & Ragnarsson, I. Microscopic study of the high-spin behaviour in selected A 80 nuclei. Nucl. Phys. A 435, 397–447 (1985).

    ADS  Google Scholar 

  6. Petrovici, A., Schmid, K. & Faessler, A. Shape coexistence and shape transition in N ≈ Z nuclei from krypton to molybdenum. Nucl. Phys. A 605, 290–300 (1996).

    ADS  Google Scholar 

  7. Gaudefroy, L. et al. Collective structure of the N = 40 isotones. Phys. Rev. C 80, 064313 (2009).

    ADS  Google Scholar 

  8. Rodríguez, T. R. & Egido, J. L. Multiple shape coexistence in the nucleus 80Zr. Phys. Lett. B 705, 255–259 (2011).

    ADS  Google Scholar 

  9. Kaneko, K., Shimizu, N., Mizusaki, T. & Sun, Y. Triple enhancement of quasi-SU(3) quadrupole collectivity in strontium-zirconium N ≈ Z isotopes. Phys. Lett. B 817, 136286 (2021).

    Google Scholar 

  10. Reinhard, P.-G. et al. Shape coexistence and the effective nucleon-nucleon interaction. Phys. Rev. C 60, 014316 (1999).

    ADS  Google Scholar 

  11. Lister, C. J. et al. Gamma radiation from the N = Z nucleus \({}_{40}^{80}{{{{\rm{Zr}}}}}_{40}\). Phys. Rev. Lett. 59, 1270–1273 (1987).

    ADS  Google Scholar 

  12. Llewellyn, R. D. O. et al. Establishing the maximum collectivity in highly deformed N = Z nuclei. Phys. Rev. Lett. 124, 152501 (2020).

    ADS  Google Scholar 

  13. Satuła, W., Dean, D., Gary, J., Mizutori, S. & Nazarewicz, W. On the origin of the Wigner energy. Phys. Lett. B 407, 103–109 (1997).

    ADS  Google Scholar 

  14. Bentley, I. & Frauendorf, S. Relation between Wigner energy and proton-neutron pairing. Phys. Rev. C 88, 014322 (2013).

    ADS  Google Scholar 

  15. Neufcourt, L. et al. Quantified limits of the nuclear landscape. Phys. Rev. C 101, 044307 (2020).

    ADS  Google Scholar 

  16. Evaluated Nuclear Structure Data File (ENSDF, accessed 25 March 2021); https://www.nndc.bnl.gov/ensarchivals

  17. Morrissey, D., Sherrill, B., Steiner, M., Stolz, A. & Wiedenhoever, I. Commissioning the A1900 projectile fragment separator. Nucl. Instrum. Methods Phys. Res. B 204, 90–96 (2003).

    Google Scholar 

  18. Lund, K. et al. Online tests of the advanced cryogenic gas stopper at NSCL. Nucl. Instrum. Methods Phys. Res. B 463, 378–381 (2020).

    ADS  Google Scholar 

  19. Ringle, R., Schwarz, S. & Bollen, G. Penning trap mass spectrometry of rare isotopes produced via projectile fragmentation at the LEBIT facility. Int. J. Mass Spectrom. 349–350, 87–93 (2013).

    Google Scholar 

  20. Schwarz, S., Bollen, G., Ringle, R., Savory, J. & Schury, P. The LEBIT ion cooler and buncher. Nucl. Instrum. Methods Phys. Res. A 816, 131–141 (2016).

    ADS  Google Scholar 

  21. Ringle, R. et al. The LEBIT 9.4 T Penning trap mass spectrometer. Nucl. Instrum. Methods Phys. Res. A 604, 536–547 (2009).

    ADS  Google Scholar 

  22. König, M., Bollen, G., Kluge, H.-J., Otto, T. & Szerypo, J. Quadrupole excitation of stored ion motion at the true cyclotron frequency. Int. J. Mass Spectrom. Ion Process. 142, 95–116 (1995).

    ADS  Google Scholar 

  23. Huang, W., Wang, M., Kondev, F., Audi, G. & Naimi, S. The AME 2020 atomic mass evaluation (I). Evaluation of input data, and adjustment procedures. Chin. Phys. C 45, 030002 (2021).

    ADS  Google Scholar 

  24. Kankainen, A. et al. Mass measurements of neutron-deficient nuclides close to A = 80 with a Penning trap. Eur. Phys. J. A 29, 271–280 (2006).

    ADS  Google Scholar 

  25. Vilén, M. et al. High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL. Phys. Rev. C 100, 054333 (2019).

    ADS  Google Scholar 

  26. Xing, Y. et al. Mass measurements of neutron-deficient Y, Zr and Nb isotopes and their impact on rp and νp nucleosynthesis processes. Phys. Lett. B 781, 358–363 (2018).

    ADS  Google Scholar 

  27. Issmer, S. et al. Direct mass measurements of A = 80 isobars. Eur. Phys. J. A 2, 173–177 (1998).

    ADS  Google Scholar 

  28. Lalleman, A. S. et al. Mass measurements of exotic nuclei around N = Z = 40 with CSS2. Hyperfine Interact. 132, 313–320 (2001).

    ADS  Google Scholar 

  29. Schatz, H. & Ong, W.-J. Dependence of X-ray burst models on nuclear masses. Astrophys. J. 844, 139 (2017).

    ADS  Google Scholar 

  30. Zhang, J.-Y., Casten, R. & Brenner, D. Empirical proton-neutron interaction energies. Linearity and saturation phenomena. Phys. Lett. B 227, 1–5 (1989).

    ADS  Google Scholar 

  31. Stoitsov, M., Cakirli, R. B., Casten, R. F., Nazarewicz, W. & Satuła, W. Empirical proton-neutron interactions and nuclear density functional theory: global, regional and local comparisons. Phys. Rev. Lett. 98, 132502 (2007).

    ADS  Google Scholar 

  32. Reinhard, P.-G., Bender, M., Nazarewicz, W. & Vertse, T. From finite nuclei to the nuclear liquid drop: leptodermous expansion based on self-consistent mean-field theory. Phys. Rev. C 73, 014309 (2006).

    ADS  Google Scholar 

  33. Bender, M. & Heenen, P.-H. What can be learned from binding energy differences about nuclear structure: the example of δVpn. Phys. Rev. C 83, 064319 (2011).

    ADS  Google Scholar 

  34. Bender, M. et al. The Z = 82 shell closure in neutron-deficient Pb isotopes. Eur. Phys. J. A 14, 23–28 (2002).

    ADS  Google Scholar 

  35. Lunney, D., Pearson, J. M. & Thibault, C. Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 75, 1021–1082 (2003).

    ADS  Google Scholar 

  36. Satuła, W., Dobaczewski, J. & Nazarewicz, W. Odd-even staggering of nuclear masses: pairing or shape effect? Phys. Rev. Lett. 81, 3599–3602 (1998).

    ADS  Google Scholar 

  37. Koszorús, Á. et al. Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32. Nat. Phys. 17, 439–443 (2021).

    Google Scholar 

  38. Zong, Y. Y., Ma, C., Zhao, Y. M. & Arima, A. Mass relations of mirror nuclei. Phys. Rev. C 102, 024302 (2020).

    ADS  Google Scholar 

  39. Goriely, S., Chamel, N. & Pearson, J. M. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient. Phys. Rev. C 88, 024308 (2013).

    ADS  Google Scholar 

  40. Phillips, D. R. et al. Get on the BAND wagon: a Bayesian framework for quantifying model uncertainties in nuclear dynamics. J. Phys. G 48, 072001 (2021).

    ADS  Google Scholar 

  41. Neufcourt, L. et al. Beyond the proton drip line: Bayesian analysis of proton-emitting nuclei. Phys. Rev. C 101, 014319 (2020).

    ADS  Google Scholar 

  42. Möller, P., Sierk, A., Ichikawa, T. & Sagawa, H. Nuclear ground-state masses and deformations: FRDM(2012). Atom. Data Nucl. Data Tables 109–110, 1–204 (2016).

    Google Scholar 

  43. Gabrielse, G. Why is sideband mass spectrometry possible with ions in a Penning trap? Phys. Rev. Lett. 102, 172501 (2009).

    ADS  Google Scholar 

  44. Ringle, R. et al. A ‘Lorentz’ steerer for ion injection into a Penning trap. Int. J. Mass Spectrom. 263, 38–44 (2007).

    Google Scholar 

  45. George, S. et al. The Ramsey method in high-precision mass spectrometry with Penning traps: experimental results. Int. J. Mass Spectrom. 264, 110–121 (2007).

    Google Scholar 

  46. Bollen, G., Moore, R. B., Savard, G. & Stolzenberg, H. The accuracy of heavy-ion mass measurements using time of flight-ion cyclotron resonance in a Penning trap. J. Appl. Phys. 68, 4355–4374 (1990).

    ADS  Google Scholar 

  47. Gulyuz, K. et al. Determination of the direct double-β-decay Q value of 96Zr and atomic masses of 90−92,94,96Zr and 92,94−98,100Mo. Phys. Rev. C 91, 055501 (2015).

    ADS  Google Scholar 

  48. Ringle, R. et al. High-precision Penning trap mass measurements of 37,38Ca and their contributions to conserved vector current and isobaric mass multiplet equation. Phys. Rev. C 75, 055503 (2007).

    ADS  Google Scholar 

  49. Brown, L. S. & Gabrielse, G. Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233–311 (1986).

    ADS  Google Scholar 

  50. Blaum, K. et al. Population inversion of nuclear states by a Penning trap mass spectrometer. Europhys. Lett. 67, 586–592 (2004).

    ADS  Google Scholar 

  51. Kwiatkowski, A. A., Bollen, G., Redshaw, M., Ringle, R. & Schwarz, S. Isobaric beam purification for high precision Penning trap mass spectrometry of radioactive isotope beams with SWIFT. Int. J. Mass Spectrom. 379, 9–15 (2015).

    Google Scholar 

  52. Bollen, G. et al. Resolution of nuclear ground and isomeric states by a Penning trap mass spectrometer. Phys. Rev. C 46, R2140–R2143 (1992).

    ADS  Google Scholar 

  53. Birge, R. T. The calculation of errors by the method of least squares. Phys. Rev. 40, 207–227 (1932).

    ADS  MATH  Google Scholar 

  54. Jänecke, J. & Comay, E. Properties of homogeneous and inhomogeneous mass relations. Nucl. Phys. A 436, 108–124 (1985).

    ADS  Google Scholar 

  55. Jensen, A., Hansen, P. & Jonson, B. New mass relations and two- and four-nucleon correlations. Nucl. Phys. A 431, 393–418 (1984).

    ADS  Google Scholar 

  56. Bartel, J., Quentin, P., Brack, M., Guet, C. & Håkansson, H.-B. Towards a better parametrisation of Skyrme-like effective forces: a critical study of the SkM force. Nucl. Phys. A 386, 79–100 (1982).

    ADS  Google Scholar 

  57. Dobaczewski, J., Flocard, H. & Treiner, J. Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nucl. Phys. A 422, 103–139 (1984).

    ADS  Google Scholar 

  58. Chabanat, E., Bonche, P., Haensel, P., Meyer, J. & Schaeffer, R. New Skyrme effective forces for supernovae and neutron rich nuclei. Phys. Scr. T56, 231–233 (1995).

    ADS  Google Scholar 

  59. Klüpfel, P., Reinhard, P.-G., Bürvenich, T. J. & Maruhn, J. A. Variations on a theme by Skyrme: a systematic study of adjustments of model parameters. Phys. Rev. C 79, 034310 (2009).

    ADS  Google Scholar 

  60. Kortelainen, M. et al. Nuclear energy density optimization. Phys. Rev. C 82, 024313 (2010).

    ADS  Google Scholar 

  61. Kortelainen, M. et al. Nuclear energy density optimization: large deformations. Phys. Rev. C 85, 024304 (2012).

    ADS  Google Scholar 

  62. Kortelainen, M. et al. Nuclear energy density optimization: shell structure. Phys. Rev. C 89, 054314 (2014).

    ADS  Google Scholar 

  63. Goriely, S., Hilaire, S., Girod, M. & Péru, S. First Gogny–Hartree–Fock–Bogoliubov nuclear mass model. Phys. Rev. Lett. 102, 242501 (2009).

    ADS  Google Scholar 

  64. Baldo, M., Robledo, L. M., Schuck, P. & Viñas, X. New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state. Phys. Rev. C 87, 064305 (2013).

    ADS  Google Scholar 

  65. Pomorski, M. et al. Proton spectroscopy of 48Ni, 46Fe and 44Cr. Phys. Rev. C 90, 014311 (2014).

    ADS  Google Scholar 

  66. Ascher, P. et al. Direct observation of two protons in the decay of 54Zn. Phys. Rev. Lett. 107, 102502 (2011).

    ADS  Google Scholar 

  67. Neufcourt, L., Cao, Y., Nazarewicz, W. & Viens, F. Bayesian approach to model-based extrapolation of nuclear observables. Phys. Rev. C 98, 034318 (2018).

    ADS  Google Scholar 

  68. Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    MathSciNet  MATH  Google Scholar 

  69. Kejzlar, V., Neufcourt, L., Maiti, T. & Viens, F. Bayesian averaging of computer models with domain discrepancies: a nuclear physics perspective. Preprint at https://arxiv.org/abs/1904.04793 (2019).

Download references

Acknowledgements

We thank the NSCL staff for their technical support as well as R. F. Casten for useful discussions on interpreting the results of the experiment. This work was conducted with the support of Michigan State University, the US National Science Foundation under contracts nos. PHY-1565546 (A.H., E.L., R.J., G.B., K.L., C.R.N., D.P., R.R., C.S.S. and I.T.Y.), PHY-1913554 (R.J.) and PHY-1430152 (R.J.), the US Department of Energy, Office of Science, Office of Nuclear Physics under awards nos. DE-SC0013365 (W.N. and L.N.) and DE-SC0018083 (NUCLEI SciDAC-4 collaboration) (S.A.G. and W.N.) and by the National Science Foundation CSSI programme under award no. 2004601 (BAND collaboration; W.N.).

Author information

Authors and Affiliations

Authors

Contributions

A.H., E.L., G.B., K.L., C.R.N., D.P., R.R., C.S.S. and I.T.Y. performed the experiment. A.H., E.L., D.P. and I.T.Y. performed the data analysis. A.H., E.L., W.N., S.A.G. and L.N. prepared the manuscript. R.J., S.A.G., W.N. and L.N. performed the Bayesian analysis. All authors discussed the results and provided comments on the manuscript.

Corresponding author

Correspondence to A. Hamaker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Alessandro Pastore, Anu Kankainen and Bo Cederwall for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamaker, A., Leistenschneider, E., Jain, R. et al. Precision mass measurement of lightweight self-conjugate nucleus 80Zr. Nat. Phys. 17, 1408–1412 (2021). https://doi.org/10.1038/s41567-021-01395-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01395-w

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing