Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Laser cooling for quantum gases

Abstract

Laser cooling exploits the physics of light scattering to cool atomic and molecular gases to close to absolute zero. It is the crucial initial step for essentially all atomic gas experiments in which Bose–Einstein condensation and, more generally, quantum degeneracy is reached. The ongoing development of laser-cooling methods has allowed more elements to be brought to quantum degeneracy, with each additional atomic species offering its own experimental opportunities. Improved methods are opening new avenues, for example, reaching Bose–Einstein condensation purely through laser cooling as well as the realization of continuous Bose–Einstein condensation. Here we review these recent innovations in laser cooling and provide an outlook on methods that may enable new ways of creating quantum gases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical experimental set-ups for ultracold gas creation.
Fig. 2: Partial electronic term schemes of elements cooled to quantum degeneracy.
Fig. 3: Raman sideband cooling of Cs.
Fig. 4: Schemes of three experiments achieving BEC by laser cooling.

References

  1. Chu, S. & Wieman, C. Feature issue on laser cooling and trapping of atoms. J. Opt. Soc. Am. B 6, 2020–2288 (1989).

    Article  ADS  Google Scholar 

  2. Metcalf, H. J. & van der Straten, P. Laser Cooling and Trapping of Neutral Atoms (Springer, 1999).

  3. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  Google Scholar 

  4. Cronin, A. D., Schmiedmayer, J. & Pritchard, D. E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009).

    Article  ADS  Google Scholar 

  5. Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006).

    Article  ADS  Google Scholar 

  6. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  7. Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).

    Article  ADS  Google Scholar 

  8. Speirs, R. W. et al. Single-shot electron diffraction using a cold atom electron source. J. Phys. B 48, 214002 (2015).

    Article  ADS  Google Scholar 

  9. Chen, C. Y. et al. Ultrasensitive isotope trace analyses with a magneto-optical trap. Science 286, 1139–1141 (1999).

    Article  Google Scholar 

  10. Eike, B., Luger, V., Manek-Hönninger, I., Grimm, R. & Schwalm, D. Laser-trapped atoms as a precision target for the storage ring TSR. Nucl. Instrum. Meth. Phys. Res. A 441, 81–86 (2000).

    Article  ADS  Google Scholar 

  11. Fried, D. G. et al. Bose–Einstein condensation of atomic hydrogen. Phys. Rev. Lett. 81, 3811–3814 (1998).

    Article  ADS  Google Scholar 

  12. Doret, S. C., Connolly, C. B., Ketterle, W. & Doyle, J. M. Buffer-gas cooled Bose–Einstein condensate. Phys. Rev. Lett. 103, 103005 (2009).

    Article  ADS  Google Scholar 

  13. Blume, D. Few-body physics with ultracold atomic and molecular systems in traps. Rep. Prog. Phys. 75, 046401 (2012).

    Article  ADS  Google Scholar 

  14. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article  Google Scholar 

  15. Phillips, W. D. Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998).

    Article  ADS  Google Scholar 

  16. Chu, S. Nobel lecture: The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998).

    Article  ADS  Google Scholar 

  17. Cohen-Tannoudji, C. N. Nobel lecture: Manipulating atoms with photons. Rev. Mod. Phys. 70, 707–719 (1998).

    Article  ADS  Google Scholar 

  18. Cornell, E. A. & Wieman, C. E. Nobel lecture: Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).

    Article  ADS  Google Scholar 

  19. Ketterle, W. Nobel lecture: When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002).

    Article  ADS  Google Scholar 

  20. Phillips, W. D. & Metcalf, H. Laser deceleration of an atomic beam. Phys. Rev. Lett. 48, 596–599 (1982).

    Article  ADS  Google Scholar 

  21. Hänsch, T. & Schawlow, A. Cooling of gases by laser radiation. Opt. Commun. 13, 68–69 (1975).

    Article  ADS  Google Scholar 

  22. Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

    Article  ADS  Google Scholar 

  23. Raab, E. L., Prentiss, M., Cable, A., Chu, S. & Pritchard, D. E. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631–2634 (1987).

    Article  ADS  Google Scholar 

  24. Ketterle, W. & van Druten, N. J. Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181–236 (1996).

    Article  ADS  Google Scholar 

  25. Pérez-Ríos, J. & Sanz, A. S. How does a magnetic trap work? Am. J. Phys. 81, 836 (2013).

    Article  ADS  Google Scholar 

  26. Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

  27. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

    Article  ADS  Google Scholar 

  28. Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).

    Article  ADS  Google Scholar 

  29. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  Google Scholar 

  30. Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  Google Scholar 

  31. Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A. & Wieman, C. E. Production of two overlapping Bose–Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997).

    Article  ADS  Google Scholar 

  32. Weyers, S., Aucouturier, E., Valentin, C. & Dimarcq, N. A continuous beam of cold cesium atoms extracted from a two-dimensional magneto-optical trap. Opt. Commun. 143, 30–34 (1997).

    Article  ADS  Google Scholar 

  33. Dieckmann, K., Spreeuw, R. J. C., Weidemüller, M. & Walraven, J. T. M. Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 58, 3891–3895 (1998).

    Article  ADS  Google Scholar 

  34. Greiner, M., Bloch, I., Hänsch, T. W. & Esslinger, T. Magnetic transport of trapped cold atoms over a large distance. Phys. Rev. A 63, 031401 (2001).

    Article  ADS  Google Scholar 

  35. Lewandowski, H. J., Harber, D. M., Whitaker, D. L. & Cornell, E. A. Simplified system for creating a Bose–Einstein condensate. J. Low Temp. Phys. 132, 309–367 (2003).

    Article  ADS  Google Scholar 

  36. Fortágh, J. & Zimmermann, C. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235–289 (2007).

    Article  ADS  Google Scholar 

  37. Lee, K. I., Kim, J. A., Noh, H. R. & Jhe, W. Single-beam atom trap in a pyramidal and conical hollow mirror. Opt. Lett. 21, 1177–1179 (1996).

    Article  ADS  Google Scholar 

  38. Vangeleyn, M., Griffin, P. F., Riis, E. & Arnold, A. S. Laser cooling with a single laser beam and a planar diffractor. Opt. Lett. 35, 3453–3455 (2010).

    Article  ADS  Google Scholar 

  39. Becker, D. et al. Space-borne Bose–Einstein condensation for precision interferometry. Nature 562, 391–395 (2018).

    Article  ADS  Google Scholar 

  40. Aveline, D. C. et al. Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature 582, 193–197 (2020).

    Article  ADS  Google Scholar 

  41. Ketterle, W., Davis, K. B., Joffe, M. A., Martin, A. & Pritchard, D. E. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett. 70, 2253–2256 (1993).

    Article  ADS  Google Scholar 

  42. Anderson, M. H., Petrich, W., Ensher, J. R. & Cornell, E. A. Reduction of light-assisted collisional loss rate from a low-pressure vapor-cell trap. Phys. Rev. A 50, R3597–R3600 (1994).

    Article  ADS  Google Scholar 

  43. DeMarco, B. & Jin, D. S. Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999).

    Article  Google Scholar 

  44. Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. B. & Hulet, R. G. Observation of Fermi pressure in a gas of trapped atoms. Science 291, 2570–2572 (2001).

    Article  ADS  Google Scholar 

  45. Bradley, C. C., Sackett, C. A., Tollett, J. J. & Hulet, R. G. Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687–1690 (1995).

    Article  ADS  Google Scholar 

  46. Bradley, C. C., Sackett, C. A., Tollett, J. J. & Hulet, R. G. Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions [Phys. Rev. Lett. 75, 1687 (1995)]. Phys. Rev. Lett. 79, 1170 (1997).

    Article  ADS  Google Scholar 

  47. Duarte, P. M. et al. All-optical production of a lithium quantum gas using narrow-line laser cooling. Phys. Rev. A 84, 061406 (2011).

    Article  ADS  Google Scholar 

  48. McKay, D. C. et al. Low-temperature high-density magneto-optical trapping of potassium using the open 4s → 5p transition at 405 nm. Phys. Rev. A 84, 063420 (2011).

    Article  ADS  Google Scholar 

  49. Salomon, G. et al. Gray-molasses cooling of 39K to a high phase-space density. Europhys. Lett. 104, 63002 (2013).

    Article  ADS  Google Scholar 

  50. Aspect, A., Arimondo, E., Kaiser, R., Vansteenkiste, N. & Cohen-Tannoudji, C. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61, 826–829 (1988).

    Article  ADS  Google Scholar 

  51. Weber, T., Herbig, J., Mark, M., Nägerl, H.-C. & Grimm, R. Bose–Einstein condensation of cesium. Science 299, 232–235 (2003).

    Article  ADS  Google Scholar 

  52. Hamann, S. E. et al. Resolved-sideband Raman cooling to the ground state of an optical lattice. Phys. Rev. Lett. 80, 4149–4152 (1998).

    Article  ADS  Google Scholar 

  53. Vuletić, V., Chin, C., Kerman, A. J. & Chu, S. Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities. Phys. Rev. Lett. 81, 5768–5771 (1998).

    Article  ADS  Google Scholar 

  54. Han, D.-J. et al. 3D Raman sideband cooling of cesium atoms at high density. Phys. Rev. Lett. 85, 724–727 (2000).

    Article  ADS  Google Scholar 

  55. Kerman, A. J., Vuletić, V., Chin, C. & Chu, S. Beyond optical molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density. Phys. Rev. Lett. 84, 439–442 (2000).

    Article  ADS  Google Scholar 

  56. Treutlein, P., Chung, K. Y. & Chu, S. High-brightness atom source for atomic fountains. Phys. Rev. A 63, 051401 (2001).

    Article  ADS  Google Scholar 

  57. Dicke, R. H. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473 (1953).

    Article  ADS  Google Scholar 

  58. Setija, I. D. et al. Optical cooling of atomic hydrogen in a magnetic trap. Phys. Rev. Lett. 70, 2257–2260 (1993).

    Article  ADS  Google Scholar 

  59. Baker, C. J. et al. Laser cooling of antihydrogen atoms. Nature 592, 35–42 (2021).

    Article  Google Scholar 

  60. Vassen, W. et al. Cold and trapped metastable noble gases. Rev. Mod. Phys. 84, 175–210 (2012).

    Article  ADS  Google Scholar 

  61. Takasu, Y. et al. Spin-singlet Bose–Einstein condensation of two-electron atoms. Phys. Rev. Lett. 91, 040404 (2003).

    Article  ADS  Google Scholar 

  62. Kraft, S., Vogt, F., Appel, O., Riehle, F. & Sterr, U. Bose–Einstein condensation of alkaline earth atoms: 40Ca. Phys. Rev. Lett. 103, 130401 (2009).

    Article  ADS  Google Scholar 

  63. Stellmer, S., Tey, M. K., Huang, B., Grimm, R. & Schreck, F. Bose–Einstein condensation of strontium. Phys. Rev. Lett. 103, 200401 (2009).

    Article  ADS  Google Scholar 

  64. de Escobar, Y. N. M. et al. Bose–Einstein condensation of 84Sr. Phys. Rev. Lett. 103, 200402 (2009).

    Article  Google Scholar 

  65. Yu, N. & Tinto, M. Gravitational wave detection with single-laser atom interferometers. Gen. Relativ. Gravit. 43, 1943–1952 (2011).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  66. Gorshkov, A. V. et al. Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nat. Phys. 6, 289–295 (2010).

    Article  Google Scholar 

  67. Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  68. Kuwamoto, T., Honda, K., Takahashi, Y. & Yabuzaki, T. Magneto-optical trapping of Yb atoms using an intercombination transition. Phys. Rev. A 60, R745–R748 (1999).

    Article  ADS  Google Scholar 

  69. Binnewies, T. et al. Doppler cooling and trapping on forbidden transitions. Phys. Rev. Lett. 87, 123002 (2001).

    Article  ADS  Google Scholar 

  70. Katori, H., Ido, T., Isoya, Y. & Kuwata-Gonokami, M. Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 82, 1116–1119 (1999).

    Article  ADS  Google Scholar 

  71. Ido, T., Isoya, Y. & Katori, H. Optical-dipole trapping of Sr atoms at a high phase-space density. Phys. Rev. A 61, 061403 (2000).

    Article  ADS  Google Scholar 

  72. Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).

    Google Scholar 

  73. Chen, C.-C., Bennetts, S., González Escudero, R., Schreck, F. & Pasquiou, B. Sisyphus optical lattice decelerator. Phys. Rev. A 100, 023401 (2019).

    Article  ADS  Google Scholar 

  74. Covey, J. P., Madjarov, I. S., Cooper, A. & Endres, M. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays. Phys. Rev. Lett. 122, 173201 (2019).

    Article  ADS  Google Scholar 

  75. Fukuhara, T., Takasu, Y., Kumakura, M. & Takahashi, Y. Degenerate Fermi gases of ytterbium. Phys. Rev. Lett. 98, 030401 (2007).

    Article  ADS  Google Scholar 

  76. DeSalvo, B. J., Yan, M., Mickelson, P. G., Martinez de Escobar, Y. N. & Killian, T. C. Degenerate Fermi gas of 87Sr. Phys. Rev. Lett. 105, 030402 (2010).

    Article  ADS  Google Scholar 

  77. Mukaiyama, T., Katori, H., Ido, T., Li, Y. & Kuwata-Gonokami, M. Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature. Phys. Rev. Lett. 90, 113002 (2003).

    Article  ADS  Google Scholar 

  78. Norcia, M. A., Cline, J. R. K., Bartolotta, J. P., Holland, M. J. & Thompson, J. K. Narrow-line laser cooling by adiabatic transfer. New J. Phys. 20, 023021 (2018).

    Article  ADS  Google Scholar 

  79. Muniz, J. A., Norcia, M. A., Cline, J. R. K. & Thompson, J. K. A robust narrow-line magneto-optical trap using adiabatic transfer. Preprint at https://arxiv.org/abs/1806.00838 (2018).

  80. Bartolotta, J. P., Norcia, M. A., Cline, J. R. K., Thompson, J. K. & Holland, M. J. Laser cooling by sawtooth-wave adiabatic passage. Phys. Rev. A 98, 023404 (2018).

    Article  ADS  Google Scholar 

  81. Stellmer, S., Schreck, F. & Killian, T. in Annual Review of Cold Atoms and Molecules (eds Madison, K. et al.) Ch. 1, 1–80 (World Scientific, 2014); https://www.worldscientific.com/worldscibooks/10.1142/9100

  82. Grünert, J. & Hemmerich, A. Sub-Doppler magneto-optical trap for calcium. Phys. Rev. A 65, 041401 (2002).

    Article  ADS  Google Scholar 

  83. Hobson, R., Bowden, W., Vianello, A., Hill, I. R. & Gill, P. Midinfrared magneto-optical trap of metastable strontium for an optical lattice clock. Phys. Rev. A 101, 013420 (2020).

    Article  ADS  Google Scholar 

  84. Riedmann, M. et al. Beating the density limit by continuously loading a dipole trap from millikelvin-hot magnesium atoms. Phys. Rev. A 86, 043416 (2012).

    Article  ADS  Google Scholar 

  85. Griesmaier, A., Werner, J., Hensler, S., Stuhler, J. & Pfau, T. Bose–Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005).

    Article  ADS  Google Scholar 

  86. Lu, M., Burdick, N. Q., Youn, S. H. & Lev, B. L. Strongly dipolar Bose–Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011).

    Article  ADS  Google Scholar 

  87. Aikawa, K. et al. Bose–Einstein condensation of erbium. Phys. Rev. Lett. 108, 210401 (2012).

    Article  ADS  Google Scholar 

  88. Davletov, E. T. et al. Machine learning for achieving Bose–Einstein condensation of thulium atoms. Phys. Rev. A 102, 011302 (2020).

    Article  ADS  Google Scholar 

  89. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    Article  ADS  Google Scholar 

  90. Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012 (2012).

    Article  Google Scholar 

  91. Burdick, N. Q., Tang, Y. & Lev, B. L. Long-lived spin–orbit-coupled degenerate dipolar Fermi gas. Phys. Rev. X 6, 031022 (2016).

    Google Scholar 

  92. Chalopin, T. et al. Probing chiral edge dynamics and bulk topology of a synthetic Hall system. Nat. Phys. 16, 1017–1021 (2020).

    Article  Google Scholar 

  93. Schmidt, P. O. et al. Continuous loading of cold atoms into a Ioffe–Pritchard magnetic trap. J. Opt. B 5, S170–S177 (2003).

    Article  Google Scholar 

  94. Schmidt, P. O. et al. Doppler cooling of an optically dense cloud of magnetically trapped atoms. J. Opt. Soc. Am. B 20, 960–967 (2003).

    Article  ADS  Google Scholar 

  95. McClelland, J. J. & Hanssen, J. L. Laser cooling without repumping: a magneto-optical trap for erbium atoms. Phys. Rev. Lett. 96, 143005 (2006).

    Article  ADS  Google Scholar 

  96. Berglund, A. J., Hanssen, J. L. & McClelland, J. J. Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms. Phys. Rev. Lett. 100, 113002 (2008).

    Article  ADS  Google Scholar 

  97. Lu, M., Burdick, N. Q. & Lev, B. L. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett. 108, 215301 (2012).

    Article  ADS  Google Scholar 

  98. Ilzhöfer, P. et al. Two-species five-beam magneto-optical trap for erbium and dysprosium. Phys. Rev. A 97, 023633 (2018).

    Article  ADS  Google Scholar 

  99. Fattori, M. et al. Demagnetization cooling of a gas. Nat. Phys. 2, 765–768 (2006).

    Article  Google Scholar 

  100. Sengstock, K. et al. Optical Ramsey spectroscopy on laser-trapped and thermal Mg atoms. Appl. Phys. B 59, 99–115 (1994).

    Article  ADS  Google Scholar 

  101. De, S., Dammalapati, U., Jungmann, K. & Willmann, L. Magneto-optical trapping of barium. Phys. Rev. A 79, 041402 (2009).

    Article  ADS  Google Scholar 

  102. Guest, J. R. et al. Laser trapping of 225Ra and 226Ra with repumping by room-temperature blackbody radiation. Phys. Rev. Lett. 98, 093001 (2007).

    Article  ADS  Google Scholar 

  103. Simsarian, J. E. et al. Magneto-optic trapping of 210Fr. Phys. Rev. Lett. 76, 3522–3525 (1996).

    Article  ADS  Google Scholar 

  104. Brickman, K.-A. et al. Magneto-optical trapping of cadmium. Phys. Rev. A 76, 043411 (2007).

    Article  ADS  Google Scholar 

  105. Hachisu, H. et al. Trapping of neutral mercury atoms and prospects for optical lattice clocks. Phys. Rev. Lett. 100, 053001 (2008).

    Article  ADS  Google Scholar 

  106. Miao, J., Hostetter, J., Stratis, G. & Saffman, M. Magneto-optical trapping of holmium atoms. Phys. Rev. A 89, 041401 (2014).

    Article  ADS  Google Scholar 

  107. Uhlenberg, G., Dirscherl, J. & Walther, H. Magneto-optical trapping of silver atoms. Phys. Rev. A 62, 063404 (2000).

    Article  ADS  Google Scholar 

  108. Eustice, S., Cassella, K. & Stamper-Kurn, D. Laser cooling of transition-metal atoms. Phys. Rev. A 102, 053327 (2020).

    Article  ADS  Google Scholar 

  109. Stellmer, S., Pasquiou, B., Grimm, R. & Schreck, F. Laser cooling to quantum degeneracy. Phys. Rev. Lett. 110, 263003 (2013).

    Article  ADS  Google Scholar 

  110. Hu, J. et al. Creation of a Bose-condensed gas of 87Rb by laser cooling. Science 358, 1078–1080 (2017).

    Article  ADS  Google Scholar 

  111. Urvoy, A., Vendeiro, Z., Ramette, J., Adiyatullin, A. & Vuletić, V. Direct laser cooling to Bose–Einstein condensation in a dipole trap. Phys. Rev. Lett. 122, 203202 (2019).

    Article  ADS  Google Scholar 

  112. Pinkse, P. W. H. et al. Adiabatically changing the phase-space density of a trapped Bose gas. Phys. Rev. Lett. 78, 990–993 (1997).

    Article  ADS  Google Scholar 

  113. Stamper-Kurn, D. M. et al. Reversible formation of a Bose–Einstein condensate. Phys. Rev. Lett. 81, 2194–2197 (1998).

    Article  ADS  Google Scholar 

  114. Sonderhouse, L. et al. Thermodynamics of a deeply degenerate SU(N)-symmetric Fermi gas. Nat. Phys. 16, 1216–1221 (2020).

    Article  Google Scholar 

  115. Robins, N., Altin, P., Debs, J. & Close, J. Atom lasers: production, properties and prospects for precision inertial measurement. Phys. Rep. 529, 265–296 (2013).

    Article  ADS  Google Scholar 

  116. Chikkatur, A. P. et al. A continuous source of Bose–Einstein condensed atoms. Science 296, 2193–2195 (2002).

    Article  ADS  Google Scholar 

  117. Miesner, H.-J. et al. Bosonic stimulation in the formation of a Bose–Einstein condensate. Science 279, 1005–1007 (1998).

    Article  ADS  Google Scholar 

  118. Robins, N. P., Figl, C., Jeppesen, M., Dennis, G. R. & Close, J. D. A pumped atom laser. Nat. Phys. 4, 731–736 (2008).

    Article  Google Scholar 

  119. Chen, C.-C. et al. Continuous Bose-Einstein condensation. Preprint at https://arxiv.org/abs/2012.07605 (2020).

  120. Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. https://doi.org/10.1038/s41567-021-01357-2 (2021).

  121. Ott, H. Single atom detection in ultracold quantum gases: a review of current progress. Rep. Prog. Phys. 79, 054401 (2016).

    Article  ADS  Google Scholar 

  122. Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    Article  ADS  Google Scholar 

  123. Olshanii, M. & Weiss, D. Producing Bose–Einstein condensates using optical lattices. Phys. Rev. Lett. 89, 090404 (2002).

    Article  ADS  Google Scholar 

  124. Tarbutt, M. R. Laser cooling of molecules. Contemp. Phys. 59, 356–376 (2018).

    Article  ADS  Google Scholar 

  125. Fitch, N. J. & Tarbutt, M. R. Laser cooled molecules. Preprint at https://arxiv.org/abs/2103.00968 (2021).

  126. Barry, J. F., Shuman, E. S., Norrgard, E. B. & DeMille, D. Laser radiation pressure slowing of a molecular beam. Phys. Rev. Lett. 108, 103002 (2012).

    Article  ADS  Google Scholar 

  127. Hummon, M. T. et al. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).

    Article  ADS  Google Scholar 

  128. Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    Article  ADS  Google Scholar 

  129. Norrgard, E. B., McCarron, D. J., Steinecker, M. H., Tarbutt, M. R. & DeMille, D. Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett. 116, 063004 (2016).

    Article  ADS  Google Scholar 

  130. Williams, H. J. et al. Magnetic trapping and coherent control of laser-cooled molecules. Phys. Rev. Lett. 120, 163201 (2018).

    Article  ADS  Google Scholar 

  131. McCarron, D. J., Steinecker, M. H., Zhu, Y. & DeMille, D. Magnetic trapping of an ultracold gas of polar molecules. Phys. Rev. Lett. 121, 013202 (2018).

    Article  ADS  Google Scholar 

  132. Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    Article  ADS  Google Scholar 

  133. Ding, S., Wu, Y., Finneran, I. A., Burau, J. J. & Ye, J. Sub-Doppler cooling and compressed trapping of YO molecules at μK temperatures. Phys. Rev. X 10, 021049 (2020).

    Google Scholar 

  134. Quéméner, G. & Julienne, P. S. Ultracold molecules under control! Chem. Rev. 112, 4949–5011 (2012).

    Article  Google Scholar 

  135. Lemeshko, M., Krems, R. V., Doyle, J. M. & Kais, S. Manipulation of molecules with electromagnetic fields. Mol. Phys. 111, 1648–1682 (2013).

    Article  ADS  Google Scholar 

  136. Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).

    Article  ADS  Google Scholar 

  137. Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).

    Article  ADS  Google Scholar 

  138. Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324–1327 (2020).

    Article  ADS  Google Scholar 

  139. Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).

    Article  ADS  Google Scholar 

  140. Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  141. De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    Article  ADS  Google Scholar 

  142. Schoene, E. A., Thorn, J. J. & Steck, D. A. Cooling atoms with a moving one-way barrier. Phys. Rev. A 82, 023419 (2010).

    Article  ADS  Google Scholar 

  143. Vuletić, V. & Chu, S. Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84, 3787–3790 (2000).

    Article  ADS  Google Scholar 

  144. Maunz, P. et al. Cavity cooling of a single atom. Nature 428, 50–52 (2004).

    Article  ADS  Google Scholar 

  145. Hosseini, M., Duan, Y., Beck, K. M., Chen, Y.-T. & Vuletić, V. Cavity cooling of many atoms. Phys. Rev. Lett. 118, 183601 (2017).

    Article  ADS  Google Scholar 

  146. Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892–895 (2020).

    Article  ADS  Google Scholar 

  147. Grimm, R., Ovchinnikov, Y. B., Sidorov, A. I. & Letokhov, V. S. Observation of a strong rectified dipole force in a bichromatic standing light wave. Phys. Rev. Lett. 65, 1415–1418 (1990).

    Article  ADS  Google Scholar 

  148. Söding, J., Grimm, R., Ovchinnikov, Y. B., Bouyer, P. & Salomon, C. Short-distance atomic beam deceleration with a stimulated light force. Phys. Rev. Lett. 78, 1420–1423 (1997).

    Article  ADS  Google Scholar 

  149. Corder, C., Arnold, B. & Metcalf, H. Laser cooling without spontaneous emission. Phys. Rev. Lett. 114, 043002 (2015).

    Article  ADS  Google Scholar 

  150. Schmidt-Kaler, F. et al. Laser cooling with electromagnetically induced transparency: application to trapped samples of ions or neutral atoms. Appl. Phys. B 73, 807–814 (2001).

    Article  ADS  Google Scholar 

  151. Eschner, J., Morigi, G., Schmidt-Kaler, F. & Blatt, R. Laser cooling of trapped ions. J. Opt. Soc. Am. B 20, 1003–1015 (2003).

    Article  ADS  Google Scholar 

  152. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  153. Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).

    Article  ADS  Google Scholar 

  154. Steck, D. Rubidium 87 D line data (Univ. Oregon, 2003); https://steck.us/alkalidata/rubidium87numbers.pdf

  155. Youn, S. H., Lu, M., Ray, U. & Lev, B. L. Dysprosium magneto-optical traps. Phys. Rev. A 82, 043425 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Spreeuw, B. van Linden van den Heuvell and S. Bennetts for helpful comments on the manuscript. We are grateful for funding from the NWO through Vici grant no. 680-47-619 and grant no. 680.92.18.05 (QuSim 2.0 programme) and from the European Union’s Horizon 2020 research and innovation programme under grant agreements no. 820404 (iqClock project) and no. 860579 (MoSaiQC project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Schreck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreck, F., Druten, K.v. Laser cooling for quantum gases. Nat. Phys. 17, 1296–1304 (2021). https://doi.org/10.1038/s41567-021-01379-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01379-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing