Abstract
Laser cooling exploits the physics of light scattering to cool atomic and molecular gases to close to absolute zero. It is the crucial initial step for essentially all atomic gas experiments in which Bose–Einstein condensation and, more generally, quantum degeneracy is reached. The ongoing development of laser-cooling methods has allowed more elements to be brought to quantum degeneracy, with each additional atomic species offering its own experimental opportunities. Improved methods are opening new avenues, for example, reaching Bose–Einstein condensation purely through laser cooling as well as the realization of continuous Bose–Einstein condensation. Here we review these recent innovations in laser cooling and provide an outlook on methods that may enable new ways of creating quantum gases.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Chu, S. & Wieman, C. Feature issue on laser cooling and trapping of atoms. J. Opt. Soc. Am. B 6, 2020–2288 (1989).
Metcalf, H. J. & van der Straten, P. Laser Cooling and Trapping of Neutral Atoms (Springer, 1999).
Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).
Cronin, A. D., Schmiedmayer, J. & Pritchard, D. E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009).
Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006).
Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).
Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).
Speirs, R. W. et al. Single-shot electron diffraction using a cold atom electron source. J. Phys. B 48, 214002 (2015).
Chen, C. Y. et al. Ultrasensitive isotope trace analyses with a magneto-optical trap. Science 286, 1139–1141 (1999).
Eike, B., Luger, V., Manek-Hönninger, I., Grimm, R. & Schwalm, D. Laser-trapped atoms as a precision target for the storage ring TSR. Nucl. Instrum. Meth. Phys. Res. A 441, 81–86 (2000).
Fried, D. G. et al. Bose–Einstein condensation of atomic hydrogen. Phys. Rev. Lett. 81, 3811–3814 (1998).
Doret, S. C., Connolly, C. B., Ketterle, W. & Doyle, J. M. Buffer-gas cooled Bose–Einstein condensate. Phys. Rev. Lett. 103, 103005 (2009).
Blume, D. Few-body physics with ultracold atomic and molecular systems in traps. Rep. Prog. Phys. 75, 046401 (2012).
Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).
Phillips, W. D. Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998).
Chu, S. Nobel lecture: The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998).
Cohen-Tannoudji, C. N. Nobel lecture: Manipulating atoms with photons. Rev. Mod. Phys. 70, 707–719 (1998).
Cornell, E. A. & Wieman, C. E. Nobel lecture: Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).
Ketterle, W. Nobel lecture: When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002).
Phillips, W. D. & Metcalf, H. Laser deceleration of an atomic beam. Phys. Rev. Lett. 48, 596–599 (1982).
Hänsch, T. & Schawlow, A. Cooling of gases by laser radiation. Opt. Commun. 13, 68–69 (1975).
Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).
Raab, E. L., Prentiss, M., Cable, A., Chu, S. & Pritchard, D. E. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631–2634 (1987).
Ketterle, W. & van Druten, N. J. Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181–236 (1996).
Pérez-Ríos, J. & Sanz, A. S. How does a magnetic trap work? Am. J. Phys. 81, 836 (2013).
Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).
Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).
Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).
Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).
Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A. & Wieman, C. E. Production of two overlapping Bose–Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997).
Weyers, S., Aucouturier, E., Valentin, C. & Dimarcq, N. A continuous beam of cold cesium atoms extracted from a two-dimensional magneto-optical trap. Opt. Commun. 143, 30–34 (1997).
Dieckmann, K., Spreeuw, R. J. C., Weidemüller, M. & Walraven, J. T. M. Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 58, 3891–3895 (1998).
Greiner, M., Bloch, I., Hänsch, T. W. & Esslinger, T. Magnetic transport of trapped cold atoms over a large distance. Phys. Rev. A 63, 031401 (2001).
Lewandowski, H. J., Harber, D. M., Whitaker, D. L. & Cornell, E. A. Simplified system for creating a Bose–Einstein condensate. J. Low Temp. Phys. 132, 309–367 (2003).
Fortágh, J. & Zimmermann, C. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235–289 (2007).
Lee, K. I., Kim, J. A., Noh, H. R. & Jhe, W. Single-beam atom trap in a pyramidal and conical hollow mirror. Opt. Lett. 21, 1177–1179 (1996).
Vangeleyn, M., Griffin, P. F., Riis, E. & Arnold, A. S. Laser cooling with a single laser beam and a planar diffractor. Opt. Lett. 35, 3453–3455 (2010).
Becker, D. et al. Space-borne Bose–Einstein condensation for precision interferometry. Nature 562, 391–395 (2018).
Aveline, D. C. et al. Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature 582, 193–197 (2020).
Ketterle, W., Davis, K. B., Joffe, M. A., Martin, A. & Pritchard, D. E. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett. 70, 2253–2256 (1993).
Anderson, M. H., Petrich, W., Ensher, J. R. & Cornell, E. A. Reduction of light-assisted collisional loss rate from a low-pressure vapor-cell trap. Phys. Rev. A 50, R3597–R3600 (1994).
DeMarco, B. & Jin, D. S. Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999).
Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. B. & Hulet, R. G. Observation of Fermi pressure in a gas of trapped atoms. Science 291, 2570–2572 (2001).
Bradley, C. C., Sackett, C. A., Tollett, J. J. & Hulet, R. G. Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687–1690 (1995).
Bradley, C. C., Sackett, C. A., Tollett, J. J. & Hulet, R. G. Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions [Phys. Rev. Lett. 75, 1687 (1995)]. Phys. Rev. Lett. 79, 1170 (1997).
Duarte, P. M. et al. All-optical production of a lithium quantum gas using narrow-line laser cooling. Phys. Rev. A 84, 061406 (2011).
McKay, D. C. et al. Low-temperature high-density magneto-optical trapping of potassium using the open 4s → 5p transition at 405 nm. Phys. Rev. A 84, 063420 (2011).
Salomon, G. et al. Gray-molasses cooling of 39K to a high phase-space density. Europhys. Lett. 104, 63002 (2013).
Aspect, A., Arimondo, E., Kaiser, R., Vansteenkiste, N. & Cohen-Tannoudji, C. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61, 826–829 (1988).
Weber, T., Herbig, J., Mark, M., Nägerl, H.-C. & Grimm, R. Bose–Einstein condensation of cesium. Science 299, 232–235 (2003).
Hamann, S. E. et al. Resolved-sideband Raman cooling to the ground state of an optical lattice. Phys. Rev. Lett. 80, 4149–4152 (1998).
Vuletić, V., Chin, C., Kerman, A. J. & Chu, S. Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities. Phys. Rev. Lett. 81, 5768–5771 (1998).
Han, D.-J. et al. 3D Raman sideband cooling of cesium atoms at high density. Phys. Rev. Lett. 85, 724–727 (2000).
Kerman, A. J., Vuletić, V., Chin, C. & Chu, S. Beyond optical molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density. Phys. Rev. Lett. 84, 439–442 (2000).
Treutlein, P., Chung, K. Y. & Chu, S. High-brightness atom source for atomic fountains. Phys. Rev. A 63, 051401 (2001).
Dicke, R. H. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473 (1953).
Setija, I. D. et al. Optical cooling of atomic hydrogen in a magnetic trap. Phys. Rev. Lett. 70, 2257–2260 (1993).
Baker, C. J. et al. Laser cooling of antihydrogen atoms. Nature 592, 35–42 (2021).
Vassen, W. et al. Cold and trapped metastable noble gases. Rev. Mod. Phys. 84, 175–210 (2012).
Takasu, Y. et al. Spin-singlet Bose–Einstein condensation of two-electron atoms. Phys. Rev. Lett. 91, 040404 (2003).
Kraft, S., Vogt, F., Appel, O., Riehle, F. & Sterr, U. Bose–Einstein condensation of alkaline earth atoms: 40Ca. Phys. Rev. Lett. 103, 130401 (2009).
Stellmer, S., Tey, M. K., Huang, B., Grimm, R. & Schreck, F. Bose–Einstein condensation of strontium. Phys. Rev. Lett. 103, 200401 (2009).
de Escobar, Y. N. M. et al. Bose–Einstein condensation of 84Sr. Phys. Rev. Lett. 103, 200402 (2009).
Yu, N. & Tinto, M. Gravitational wave detection with single-laser atom interferometers. Gen. Relativ. Gravit. 43, 1943–1952 (2011).
Gorshkov, A. V. et al. Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nat. Phys. 6, 289–295 (2010).
Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).
Kuwamoto, T., Honda, K., Takahashi, Y. & Yabuzaki, T. Magneto-optical trapping of Yb atoms using an intercombination transition. Phys. Rev. A 60, R745–R748 (1999).
Binnewies, T. et al. Doppler cooling and trapping on forbidden transitions. Phys. Rev. Lett. 87, 123002 (2001).
Katori, H., Ido, T., Isoya, Y. & Kuwata-Gonokami, M. Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 82, 1116–1119 (1999).
Ido, T., Isoya, Y. & Katori, H. Optical-dipole trapping of Sr atoms at a high phase-space density. Phys. Rev. A 61, 061403 (2000).
Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).
Chen, C.-C., Bennetts, S., González Escudero, R., Schreck, F. & Pasquiou, B. Sisyphus optical lattice decelerator. Phys. Rev. A 100, 023401 (2019).
Covey, J. P., Madjarov, I. S., Cooper, A. & Endres, M. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays. Phys. Rev. Lett. 122, 173201 (2019).
Fukuhara, T., Takasu, Y., Kumakura, M. & Takahashi, Y. Degenerate Fermi gases of ytterbium. Phys. Rev. Lett. 98, 030401 (2007).
DeSalvo, B. J., Yan, M., Mickelson, P. G., Martinez de Escobar, Y. N. & Killian, T. C. Degenerate Fermi gas of 87Sr. Phys. Rev. Lett. 105, 030402 (2010).
Mukaiyama, T., Katori, H., Ido, T., Li, Y. & Kuwata-Gonokami, M. Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature. Phys. Rev. Lett. 90, 113002 (2003).
Norcia, M. A., Cline, J. R. K., Bartolotta, J. P., Holland, M. J. & Thompson, J. K. Narrow-line laser cooling by adiabatic transfer. New J. Phys. 20, 023021 (2018).
Muniz, J. A., Norcia, M. A., Cline, J. R. K. & Thompson, J. K. A robust narrow-line magneto-optical trap using adiabatic transfer. Preprint at https://arxiv.org/abs/1806.00838 (2018).
Bartolotta, J. P., Norcia, M. A., Cline, J. R. K., Thompson, J. K. & Holland, M. J. Laser cooling by sawtooth-wave adiabatic passage. Phys. Rev. A 98, 023404 (2018).
Stellmer, S., Schreck, F. & Killian, T. in Annual Review of Cold Atoms and Molecules (eds Madison, K. et al.) Ch. 1, 1–80 (World Scientific, 2014); https://www.worldscientific.com/worldscibooks/10.1142/9100
Grünert, J. & Hemmerich, A. Sub-Doppler magneto-optical trap for calcium. Phys. Rev. A 65, 041401 (2002).
Hobson, R., Bowden, W., Vianello, A., Hill, I. R. & Gill, P. Midinfrared magneto-optical trap of metastable strontium for an optical lattice clock. Phys. Rev. A 101, 013420 (2020).
Riedmann, M. et al. Beating the density limit by continuously loading a dipole trap from millikelvin-hot magnesium atoms. Phys. Rev. A 86, 043416 (2012).
Griesmaier, A., Werner, J., Hensler, S., Stuhler, J. & Pfau, T. Bose–Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005).
Lu, M., Burdick, N. Q., Youn, S. H. & Lev, B. L. Strongly dipolar Bose–Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011).
Aikawa, K. et al. Bose–Einstein condensation of erbium. Phys. Rev. Lett. 108, 210401 (2012).
Davletov, E. T. et al. Machine learning for achieving Bose–Einstein condensation of thulium atoms. Phys. Rev. A 102, 011302 (2020).
Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).
Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012 (2012).
Burdick, N. Q., Tang, Y. & Lev, B. L. Long-lived spin–orbit-coupled degenerate dipolar Fermi gas. Phys. Rev. X 6, 031022 (2016).
Chalopin, T. et al. Probing chiral edge dynamics and bulk topology of a synthetic Hall system. Nat. Phys. 16, 1017–1021 (2020).
Schmidt, P. O. et al. Continuous loading of cold atoms into a Ioffe–Pritchard magnetic trap. J. Opt. B 5, S170–S177 (2003).
Schmidt, P. O. et al. Doppler cooling of an optically dense cloud of magnetically trapped atoms. J. Opt. Soc. Am. B 20, 960–967 (2003).
McClelland, J. J. & Hanssen, J. L. Laser cooling without repumping: a magneto-optical trap for erbium atoms. Phys. Rev. Lett. 96, 143005 (2006).
Berglund, A. J., Hanssen, J. L. & McClelland, J. J. Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms. Phys. Rev. Lett. 100, 113002 (2008).
Lu, M., Burdick, N. Q. & Lev, B. L. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett. 108, 215301 (2012).
Ilzhöfer, P. et al. Two-species five-beam magneto-optical trap for erbium and dysprosium. Phys. Rev. A 97, 023633 (2018).
Fattori, M. et al. Demagnetization cooling of a gas. Nat. Phys. 2, 765–768 (2006).
Sengstock, K. et al. Optical Ramsey spectroscopy on laser-trapped and thermal Mg atoms. Appl. Phys. B 59, 99–115 (1994).
De, S., Dammalapati, U., Jungmann, K. & Willmann, L. Magneto-optical trapping of barium. Phys. Rev. A 79, 041402 (2009).
Guest, J. R. et al. Laser trapping of 225Ra and 226Ra with repumping by room-temperature blackbody radiation. Phys. Rev. Lett. 98, 093001 (2007).
Simsarian, J. E. et al. Magneto-optic trapping of 210Fr. Phys. Rev. Lett. 76, 3522–3525 (1996).
Brickman, K.-A. et al. Magneto-optical trapping of cadmium. Phys. Rev. A 76, 043411 (2007).
Hachisu, H. et al. Trapping of neutral mercury atoms and prospects for optical lattice clocks. Phys. Rev. Lett. 100, 053001 (2008).
Miao, J., Hostetter, J., Stratis, G. & Saffman, M. Magneto-optical trapping of holmium atoms. Phys. Rev. A 89, 041401 (2014).
Uhlenberg, G., Dirscherl, J. & Walther, H. Magneto-optical trapping of silver atoms. Phys. Rev. A 62, 063404 (2000).
Eustice, S., Cassella, K. & Stamper-Kurn, D. Laser cooling of transition-metal atoms. Phys. Rev. A 102, 053327 (2020).
Stellmer, S., Pasquiou, B., Grimm, R. & Schreck, F. Laser cooling to quantum degeneracy. Phys. Rev. Lett. 110, 263003 (2013).
Hu, J. et al. Creation of a Bose-condensed gas of 87Rb by laser cooling. Science 358, 1078–1080 (2017).
Urvoy, A., Vendeiro, Z., Ramette, J., Adiyatullin, A. & Vuletić, V. Direct laser cooling to Bose–Einstein condensation in a dipole trap. Phys. Rev. Lett. 122, 203202 (2019).
Pinkse, P. W. H. et al. Adiabatically changing the phase-space density of a trapped Bose gas. Phys. Rev. Lett. 78, 990–993 (1997).
Stamper-Kurn, D. M. et al. Reversible formation of a Bose–Einstein condensate. Phys. Rev. Lett. 81, 2194–2197 (1998).
Sonderhouse, L. et al. Thermodynamics of a deeply degenerate SU(N)-symmetric Fermi gas. Nat. Phys. 16, 1216–1221 (2020).
Robins, N., Altin, P., Debs, J. & Close, J. Atom lasers: production, properties and prospects for precision inertial measurement. Phys. Rep. 529, 265–296 (2013).
Chikkatur, A. P. et al. A continuous source of Bose–Einstein condensed atoms. Science 296, 2193–2195 (2002).
Miesner, H.-J. et al. Bosonic stimulation in the formation of a Bose–Einstein condensate. Science 279, 1005–1007 (1998).
Robins, N. P., Figl, C., Jeppesen, M., Dennis, G. R. & Close, J. D. A pumped atom laser. Nat. Phys. 4, 731–736 (2008).
Chen, C.-C. et al. Continuous Bose-Einstein condensation. Preprint at https://arxiv.org/abs/2012.07605 (2020).
Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. https://doi.org/10.1038/s41567-021-01357-2 (2021).
Ott, H. Single atom detection in ultracold quantum gases: a review of current progress. Rep. Prog. Phys. 79, 054401 (2016).
Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).
Olshanii, M. & Weiss, D. Producing Bose–Einstein condensates using optical lattices. Phys. Rev. Lett. 89, 090404 (2002).
Tarbutt, M. R. Laser cooling of molecules. Contemp. Phys. 59, 356–376 (2018).
Fitch, N. J. & Tarbutt, M. R. Laser cooled molecules. Preprint at https://arxiv.org/abs/2103.00968 (2021).
Barry, J. F., Shuman, E. S., Norrgard, E. B. & DeMille, D. Laser radiation pressure slowing of a molecular beam. Phys. Rev. Lett. 108, 103002 (2012).
Hummon, M. T. et al. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).
Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).
Norrgard, E. B., McCarron, D. J., Steinecker, M. H., Tarbutt, M. R. & DeMille, D. Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett. 116, 063004 (2016).
Williams, H. J. et al. Magnetic trapping and coherent control of laser-cooled molecules. Phys. Rev. Lett. 120, 163201 (2018).
McCarron, D. J., Steinecker, M. H., Zhu, Y. & DeMille, D. Magnetic trapping of an ultracold gas of polar molecules. Phys. Rev. Lett. 121, 013202 (2018).
Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).
Ding, S., Wu, Y., Finneran, I. A., Burau, J. J. & Ye, J. Sub-Doppler cooling and compressed trapping of YO molecules at μK temperatures. Phys. Rev. X 10, 021049 (2020).
Quéméner, G. & Julienne, P. S. Ultracold molecules under control! Chem. Rev. 112, 4949–5011 (2012).
Lemeshko, M., Krems, R. V., Doyle, J. M. & Kais, S. Manipulation of molecules with electromagnetic fields. Mol. Phys. 111, 1648–1682 (2013).
Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).
Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).
Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324–1327 (2020).
Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).
Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).
De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).
Schoene, E. A., Thorn, J. J. & Steck, D. A. Cooling atoms with a moving one-way barrier. Phys. Rev. A 82, 023419 (2010).
Vuletić, V. & Chu, S. Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84, 3787–3790 (2000).
Maunz, P. et al. Cavity cooling of a single atom. Nature 428, 50–52 (2004).
Hosseini, M., Duan, Y., Beck, K. M., Chen, Y.-T. & Vuletić, V. Cavity cooling of many atoms. Phys. Rev. Lett. 118, 183601 (2017).
Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892–895 (2020).
Grimm, R., Ovchinnikov, Y. B., Sidorov, A. I. & Letokhov, V. S. Observation of a strong rectified dipole force in a bichromatic standing light wave. Phys. Rev. Lett. 65, 1415–1418 (1990).
Söding, J., Grimm, R., Ovchinnikov, Y. B., Bouyer, P. & Salomon, C. Short-distance atomic beam deceleration with a stimulated light force. Phys. Rev. Lett. 78, 1420–1423 (1997).
Corder, C., Arnold, B. & Metcalf, H. Laser cooling without spontaneous emission. Phys. Rev. Lett. 114, 043002 (2015).
Schmidt-Kaler, F. et al. Laser cooling with electromagnetically induced transparency: application to trapped samples of ions or neutral atoms. Appl. Phys. B 73, 807–814 (2001).
Eschner, J., Morigi, G., Schmidt-Kaler, F. & Blatt, R. Laser cooling of trapped ions. J. Opt. Soc. Am. B 20, 1003–1015 (2003).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).
Steck, D. Rubidium 87 D line data (Univ. Oregon, 2003); https://steck.us/alkalidata/rubidium87numbers.pdf
Youn, S. H., Lu, M., Ray, U. & Lev, B. L. Dysprosium magneto-optical traps. Phys. Rev. A 82, 043425 (2010).
Acknowledgements
We thank R. Spreeuw, B. van Linden van den Heuvell and S. Bennetts for helpful comments on the manuscript. We are grateful for funding from the NWO through Vici grant no. 680-47-619 and grant no. 680.92.18.05 (QuSim 2.0 programme) and from the European Union’s Horizon 2020 research and innovation programme under grant agreements no. 820404 (iqClock project) and no. 860579 (MoSaiQC project).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Schreck, F., Druten, K.v. Laser cooling for quantum gases. Nat. Phys. 17, 1296–1304 (2021). https://doi.org/10.1038/s41567-021-01379-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-021-01379-w
This article is cited by
-
Engineered dissipation for quantum information science
Nature Reviews Physics (2022)
-
Cold atoms stay cool
Nature Physics (2021)