Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Laser cooling for quantum gases


Laser cooling exploits the physics of light scattering to cool atomic and molecular gases to close to absolute zero. It is the crucial initial step for essentially all atomic gas experiments in which Bose–Einstein condensation and, more generally, quantum degeneracy is reached. The ongoing development of laser-cooling methods has allowed more elements to be brought to quantum degeneracy, with each additional atomic species offering its own experimental opportunities. Improved methods are opening new avenues, for example, reaching Bose–Einstein condensation purely through laser cooling as well as the realization of continuous Bose–Einstein condensation. Here we review these recent innovations in laser cooling and provide an outlook on methods that may enable new ways of creating quantum gases.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Typical experimental set-ups for ultracold gas creation.
Fig. 2: Partial electronic term schemes of elements cooled to quantum degeneracy.
Fig. 3: Raman sideband cooling of Cs.
Fig. 4: Schemes of three experiments achieving BEC by laser cooling.


  1. 1.

    Chu, S. & Wieman, C. Feature issue on laser cooling and trapping of atoms. J. Opt. Soc. Am. B 6, 2020–2288 (1989).

    ADS  Google Scholar 

  2. 2.

    Metcalf, H. J. & van der Straten, P. Laser Cooling and Trapping of Neutral Atoms (Springer, 1999).

  3. 3.

    Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS  Google Scholar 

  4. 4.

    Cronin, A. D., Schmiedmayer, J. & Pritchard, D. E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009).

    ADS  Google Scholar 

  5. 5.

    Jones, K. M., Tiesinga, E., Lett, P. D. & Julienne, P. S. Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006).

    ADS  Google Scholar 

  6. 6.

    Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    MathSciNet  ADS  Google Scholar 

  7. 7.

    Heshami, K. et al. Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63, 2005–2028 (2016).

    ADS  Google Scholar 

  8. 8.

    Speirs, R. W. et al. Single-shot electron diffraction using a cold atom electron source. J. Phys. B 48, 214002 (2015).

    ADS  Google Scholar 

  9. 9.

    Chen, C. Y. et al. Ultrasensitive isotope trace analyses with a magneto-optical trap. Science 286, 1139–1141 (1999).

    Google Scholar 

  10. 10.

    Eike, B., Luger, V., Manek-Hönninger, I., Grimm, R. & Schwalm, D. Laser-trapped atoms as a precision target for the storage ring TSR. Nucl. Instrum. Meth. Phys. Res. A 441, 81–86 (2000).

    ADS  Google Scholar 

  11. 11.

    Fried, D. G. et al. Bose–Einstein condensation of atomic hydrogen. Phys. Rev. Lett. 81, 3811–3814 (1998).

    ADS  Google Scholar 

  12. 12.

    Doret, S. C., Connolly, C. B., Ketterle, W. & Doyle, J. M. Buffer-gas cooled Bose–Einstein condensate. Phys. Rev. Lett. 103, 103005 (2009).

    ADS  Google Scholar 

  13. 13.

    Blume, D. Few-body physics with ultracold atomic and molecular systems in traps. Rep. Prog. Phys. 75, 046401 (2012).

    ADS  Google Scholar 

  14. 14.

    Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Google Scholar 

  15. 15.

    Phillips, W. D. Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70, 721–741 (1998).

    ADS  Google Scholar 

  16. 16.

    Chu, S. Nobel lecture: The manipulation of neutral particles. Rev. Mod. Phys. 70, 685–706 (1998).

    ADS  Google Scholar 

  17. 17.

    Cohen-Tannoudji, C. N. Nobel lecture: Manipulating atoms with photons. Rev. Mod. Phys. 70, 707–719 (1998).

    ADS  Google Scholar 

  18. 18.

    Cornell, E. A. & Wieman, C. E. Nobel lecture: Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).

    ADS  Google Scholar 

  19. 19.

    Ketterle, W. Nobel lecture: When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002).

    ADS  Google Scholar 

  20. 20.

    Phillips, W. D. & Metcalf, H. Laser deceleration of an atomic beam. Phys. Rev. Lett. 48, 596–599 (1982).

    ADS  Google Scholar 

  21. 21.

    Hänsch, T. & Schawlow, A. Cooling of gases by laser radiation. Opt. Commun. 13, 68–69 (1975).

    ADS  Google Scholar 

  22. 22.

    Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

    ADS  Google Scholar 

  23. 23.

    Raab, E. L., Prentiss, M., Cable, A., Chu, S. & Pritchard, D. E. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631–2634 (1987).

    ADS  Google Scholar 

  24. 24.

    Ketterle, W. & van Druten, N. J. Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181–236 (1996).

    ADS  Google Scholar 

  25. 25.

    Pérez-Ríos, J. & Sanz, A. S. How does a magnetic trap work? Am. J. Phys. 81, 836 (2013).

    ADS  Google Scholar 

  26. 26.

    Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

  27. 27.

    Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

    ADS  Google Scholar 

  28. 28.

    Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).

    ADS  Google Scholar 

  29. 29.

    Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    ADS  Google Scholar 

  30. 30.

    Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    ADS  Google Scholar 

  31. 31.

    Myatt, C. J., Burt, E. A., Ghrist, R. W., Cornell, E. A. & Wieman, C. E. Production of two overlapping Bose–Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78, 586–589 (1997).

    ADS  Google Scholar 

  32. 32.

    Weyers, S., Aucouturier, E., Valentin, C. & Dimarcq, N. A continuous beam of cold cesium atoms extracted from a two-dimensional magneto-optical trap. Opt. Commun. 143, 30–34 (1997).

    ADS  Google Scholar 

  33. 33.

    Dieckmann, K., Spreeuw, R. J. C., Weidemüller, M. & Walraven, J. T. M. Two-dimensional magneto-optical trap as a source of slow atoms. Phys. Rev. A 58, 3891–3895 (1998).

    ADS  Google Scholar 

  34. 34.

    Greiner, M., Bloch, I., Hänsch, T. W. & Esslinger, T. Magnetic transport of trapped cold atoms over a large distance. Phys. Rev. A 63, 031401 (2001).

    ADS  Google Scholar 

  35. 35.

    Lewandowski, H. J., Harber, D. M., Whitaker, D. L. & Cornell, E. A. Simplified system for creating a Bose–Einstein condensate. J. Low Temp. Phys. 132, 309–367 (2003).

    ADS  Google Scholar 

  36. 36.

    Fortágh, J. & Zimmermann, C. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235–289 (2007).

    ADS  Google Scholar 

  37. 37.

    Lee, K. I., Kim, J. A., Noh, H. R. & Jhe, W. Single-beam atom trap in a pyramidal and conical hollow mirror. Opt. Lett. 21, 1177–1179 (1996).

    ADS  Google Scholar 

  38. 38.

    Vangeleyn, M., Griffin, P. F., Riis, E. & Arnold, A. S. Laser cooling with a single laser beam and a planar diffractor. Opt. Lett. 35, 3453–3455 (2010).

    ADS  Google Scholar 

  39. 39.

    Becker, D. et al. Space-borne Bose–Einstein condensation for precision interferometry. Nature 562, 391–395 (2018).

    ADS  Google Scholar 

  40. 40.

    Aveline, D. C. et al. Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature 582, 193–197 (2020).

    ADS  Google Scholar 

  41. 41.

    Ketterle, W., Davis, K. B., Joffe, M. A., Martin, A. & Pritchard, D. E. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett. 70, 2253–2256 (1993).

    ADS  Google Scholar 

  42. 42.

    Anderson, M. H., Petrich, W., Ensher, J. R. & Cornell, E. A. Reduction of light-assisted collisional loss rate from a low-pressure vapor-cell trap. Phys. Rev. A 50, R3597–R3600 (1994).

    ADS  Google Scholar 

  43. 43.

    DeMarco, B. & Jin, D. S. Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999).

    Google Scholar 

  44. 44.

    Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. B. & Hulet, R. G. Observation of Fermi pressure in a gas of trapped atoms. Science 291, 2570–2572 (2001).

    ADS  Google Scholar 

  45. 45.

    Bradley, C. C., Sackett, C. A., Tollett, J. J. & Hulet, R. G. Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687–1690 (1995).

    ADS  Google Scholar 

  46. 46.

    Bradley, C. C., Sackett, C. A., Tollett, J. J. & Hulet, R. G. Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions [Phys. Rev. Lett. 75, 1687 (1995)]. Phys. Rev. Lett. 79, 1170 (1997).

    ADS  Google Scholar 

  47. 47.

    Duarte, P. M. et al. All-optical production of a lithium quantum gas using narrow-line laser cooling. Phys. Rev. A 84, 061406 (2011).

    ADS  Google Scholar 

  48. 48.

    McKay, D. C. et al. Low-temperature high-density magneto-optical trapping of potassium using the open 4s → 5p transition at 405 nm. Phys. Rev. A 84, 063420 (2011).

    ADS  Google Scholar 

  49. 49.

    Salomon, G. et al. Gray-molasses cooling of 39K to a high phase-space density. Europhys. Lett. 104, 63002 (2013).

    ADS  Google Scholar 

  50. 50.

    Aspect, A., Arimondo, E., Kaiser, R., Vansteenkiste, N. & Cohen-Tannoudji, C. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61, 826–829 (1988).

    ADS  Google Scholar 

  51. 51.

    Weber, T., Herbig, J., Mark, M., Nägerl, H.-C. & Grimm, R. Bose–Einstein condensation of cesium. Science 299, 232–235 (2003).

    ADS  Google Scholar 

  52. 52.

    Hamann, S. E. et al. Resolved-sideband Raman cooling to the ground state of an optical lattice. Phys. Rev. Lett. 80, 4149–4152 (1998).

    ADS  Google Scholar 

  53. 53.

    Vuletić, V., Chin, C., Kerman, A. J. & Chu, S. Degenerate Raman sideband cooling of trapped cesium atoms at very high atomic densities. Phys. Rev. Lett. 81, 5768–5771 (1998).

    ADS  Google Scholar 

  54. 54.

    Han, D.-J. et al. 3D Raman sideband cooling of cesium atoms at high density. Phys. Rev. Lett. 85, 724–727 (2000).

    ADS  Google Scholar 

  55. 55.

    Kerman, A. J., Vuletić, V., Chin, C. & Chu, S. Beyond optical molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density. Phys. Rev. Lett. 84, 439–442 (2000).

    ADS  Google Scholar 

  56. 56.

    Treutlein, P., Chung, K. Y. & Chu, S. High-brightness atom source for atomic fountains. Phys. Rev. A 63, 051401 (2001).

    ADS  Google Scholar 

  57. 57.

    Dicke, R. H. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473 (1953).

    ADS  Google Scholar 

  58. 58.

    Setija, I. D. et al. Optical cooling of atomic hydrogen in a magnetic trap. Phys. Rev. Lett. 70, 2257–2260 (1993).

    ADS  Google Scholar 

  59. 59.

    Baker, C. J. et al. Laser cooling of antihydrogen atoms. Nature 592, 35–42 (2021).

    Google Scholar 

  60. 60.

    Vassen, W. et al. Cold and trapped metastable noble gases. Rev. Mod. Phys. 84, 175–210 (2012).

    ADS  Google Scholar 

  61. 61.

    Takasu, Y. et al. Spin-singlet Bose–Einstein condensation of two-electron atoms. Phys. Rev. Lett. 91, 040404 (2003).

    ADS  Google Scholar 

  62. 62.

    Kraft, S., Vogt, F., Appel, O., Riehle, F. & Sterr, U. Bose–Einstein condensation of alkaline earth atoms: 40Ca. Phys. Rev. Lett. 103, 130401 (2009).

    ADS  Google Scholar 

  63. 63.

    Stellmer, S., Tey, M. K., Huang, B., Grimm, R. & Schreck, F. Bose–Einstein condensation of strontium. Phys. Rev. Lett. 103, 200401 (2009).

    ADS  Google Scholar 

  64. 64.

    de Escobar, Y. N. M. et al. Bose–Einstein condensation of 84Sr. Phys. Rev. Lett. 103, 200402 (2009).

    Google Scholar 

  65. 65.

    Yu, N. & Tinto, M. Gravitational wave detection with single-laser atom interferometers. Gen. Relativ. Gravit. 43, 1943–1952 (2011).

    MathSciNet  MATH  ADS  Google Scholar 

  66. 66.

    Gorshkov, A. V. et al. Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nat. Phys. 6, 289–295 (2010).

    Google Scholar 

  67. 67.

    Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).

    MathSciNet  ADS  Google Scholar 

  68. 68.

    Kuwamoto, T., Honda, K., Takahashi, Y. & Yabuzaki, T. Magneto-optical trapping of Yb atoms using an intercombination transition. Phys. Rev. A 60, R745–R748 (1999).

    ADS  Google Scholar 

  69. 69.

    Binnewies, T. et al. Doppler cooling and trapping on forbidden transitions. Phys. Rev. Lett. 87, 123002 (2001).

    ADS  Google Scholar 

  70. 70.

    Katori, H., Ido, T., Isoya, Y. & Kuwata-Gonokami, M. Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 82, 1116–1119 (1999).

    ADS  Google Scholar 

  71. 71.

    Ido, T., Isoya, Y. & Katori, H. Optical-dipole trapping of Sr atoms at a high phase-space density. Phys. Rev. A 61, 061403 (2000).

    ADS  Google Scholar 

  72. 72.

    Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).

    Google Scholar 

  73. 73.

    Chen, C.-C., Bennetts, S., González Escudero, R., Schreck, F. & Pasquiou, B. Sisyphus optical lattice decelerator. Phys. Rev. A 100, 023401 (2019).

    ADS  Google Scholar 

  74. 74.

    Covey, J. P., Madjarov, I. S., Cooper, A. & Endres, M. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays. Phys. Rev. Lett. 122, 173201 (2019).

    ADS  Google Scholar 

  75. 75.

    Fukuhara, T., Takasu, Y., Kumakura, M. & Takahashi, Y. Degenerate Fermi gases of ytterbium. Phys. Rev. Lett. 98, 030401 (2007).

    ADS  Google Scholar 

  76. 76.

    DeSalvo, B. J., Yan, M., Mickelson, P. G., Martinez de Escobar, Y. N. & Killian, T. C. Degenerate Fermi gas of 87Sr. Phys. Rev. Lett. 105, 030402 (2010).

    ADS  Google Scholar 

  77. 77.

    Mukaiyama, T., Katori, H., Ido, T., Li, Y. & Kuwata-Gonokami, M. Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature. Phys. Rev. Lett. 90, 113002 (2003).

    ADS  Google Scholar 

  78. 78.

    Norcia, M. A., Cline, J. R. K., Bartolotta, J. P., Holland, M. J. & Thompson, J. K. Narrow-line laser cooling by adiabatic transfer. New J. Phys. 20, 023021 (2018).

    ADS  Google Scholar 

  79. 79.

    Muniz, J. A., Norcia, M. A., Cline, J. R. K. & Thompson, J. K. A robust narrow-line magneto-optical trap using adiabatic transfer. Preprint at (2018).

  80. 80.

    Bartolotta, J. P., Norcia, M. A., Cline, J. R. K., Thompson, J. K. & Holland, M. J. Laser cooling by sawtooth-wave adiabatic passage. Phys. Rev. A 98, 023404 (2018).

    ADS  Google Scholar 

  81. 81.

    Stellmer, S., Schreck, F. & Killian, T. in Annual Review of Cold Atoms and Molecules (eds Madison, K. et al.) Ch. 1, 1–80 (World Scientific, 2014);

  82. 82.

    Grünert, J. & Hemmerich, A. Sub-Doppler magneto-optical trap for calcium. Phys. Rev. A 65, 041401 (2002).

    ADS  Google Scholar 

  83. 83.

    Hobson, R., Bowden, W., Vianello, A., Hill, I. R. & Gill, P. Midinfrared magneto-optical trap of metastable strontium for an optical lattice clock. Phys. Rev. A 101, 013420 (2020).

    ADS  Google Scholar 

  84. 84.

    Riedmann, M. et al. Beating the density limit by continuously loading a dipole trap from millikelvin-hot magnesium atoms. Phys. Rev. A 86, 043416 (2012).

    ADS  Google Scholar 

  85. 85.

    Griesmaier, A., Werner, J., Hensler, S., Stuhler, J. & Pfau, T. Bose–Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005).

    ADS  Google Scholar 

  86. 86.

    Lu, M., Burdick, N. Q., Youn, S. H. & Lev, B. L. Strongly dipolar Bose–Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011).

    ADS  Google Scholar 

  87. 87.

    Aikawa, K. et al. Bose–Einstein condensation of erbium. Phys. Rev. Lett. 108, 210401 (2012).

    ADS  Google Scholar 

  88. 88.

    Davletov, E. T. et al. Machine learning for achieving Bose–Einstein condensation of thulium atoms. Phys. Rev. A 102, 011302 (2020).

    ADS  Google Scholar 

  89. 89.

    Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    ADS  Google Scholar 

  90. 90.

    Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012 (2012).

    Google Scholar 

  91. 91.

    Burdick, N. Q., Tang, Y. & Lev, B. L. Long-lived spin–orbit-coupled degenerate dipolar Fermi gas. Phys. Rev. X 6, 031022 (2016).

    Google Scholar 

  92. 92.

    Chalopin, T. et al. Probing chiral edge dynamics and bulk topology of a synthetic Hall system. Nat. Phys. 16, 1017–1021 (2020).

    Google Scholar 

  93. 93.

    Schmidt, P. O. et al. Continuous loading of cold atoms into a Ioffe–Pritchard magnetic trap. J. Opt. B 5, S170–S177 (2003).

    Google Scholar 

  94. 94.

    Schmidt, P. O. et al. Doppler cooling of an optically dense cloud of magnetically trapped atoms. J. Opt. Soc. Am. B 20, 960–967 (2003).

    ADS  Google Scholar 

  95. 95.

    McClelland, J. J. & Hanssen, J. L. Laser cooling without repumping: a magneto-optical trap for erbium atoms. Phys. Rev. Lett. 96, 143005 (2006).

    ADS  Google Scholar 

  96. 96.

    Berglund, A. J., Hanssen, J. L. & McClelland, J. J. Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms. Phys. Rev. Lett. 100, 113002 (2008).

    ADS  Google Scholar 

  97. 97.

    Lu, M., Burdick, N. Q. & Lev, B. L. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett. 108, 215301 (2012).

    ADS  Google Scholar 

  98. 98.

    Ilzhöfer, P. et al. Two-species five-beam magneto-optical trap for erbium and dysprosium. Phys. Rev. A 97, 023633 (2018).

    ADS  Google Scholar 

  99. 99.

    Fattori, M. et al. Demagnetization cooling of a gas. Nat. Phys. 2, 765–768 (2006).

    Google Scholar 

  100. 100.

    Sengstock, K. et al. Optical Ramsey spectroscopy on laser-trapped and thermal Mg atoms. Appl. Phys. B 59, 99–115 (1994).

    ADS  Google Scholar 

  101. 101.

    De, S., Dammalapati, U., Jungmann, K. & Willmann, L. Magneto-optical trapping of barium. Phys. Rev. A 79, 041402 (2009).

    ADS  Google Scholar 

  102. 102.

    Guest, J. R. et al. Laser trapping of 225Ra and 226Ra with repumping by room-temperature blackbody radiation. Phys. Rev. Lett. 98, 093001 (2007).

    ADS  Google Scholar 

  103. 103.

    Simsarian, J. E. et al. Magneto-optic trapping of 210Fr. Phys. Rev. Lett. 76, 3522–3525 (1996).

    ADS  Google Scholar 

  104. 104.

    Brickman, K.-A. et al. Magneto-optical trapping of cadmium. Phys. Rev. A 76, 043411 (2007).

    ADS  Google Scholar 

  105. 105.

    Hachisu, H. et al. Trapping of neutral mercury atoms and prospects for optical lattice clocks. Phys. Rev. Lett. 100, 053001 (2008).

    ADS  Google Scholar 

  106. 106.

    Miao, J., Hostetter, J., Stratis, G. & Saffman, M. Magneto-optical trapping of holmium atoms. Phys. Rev. A 89, 041401 (2014).

    ADS  Google Scholar 

  107. 107.

    Uhlenberg, G., Dirscherl, J. & Walther, H. Magneto-optical trapping of silver atoms. Phys. Rev. A 62, 063404 (2000).

    ADS  Google Scholar 

  108. 108.

    Eustice, S., Cassella, K. & Stamper-Kurn, D. Laser cooling of transition-metal atoms. Phys. Rev. A 102, 053327 (2020).

    ADS  Google Scholar 

  109. 109.

    Stellmer, S., Pasquiou, B., Grimm, R. & Schreck, F. Laser cooling to quantum degeneracy. Phys. Rev. Lett. 110, 263003 (2013).

    ADS  Google Scholar 

  110. 110.

    Hu, J. et al. Creation of a Bose-condensed gas of 87Rb by laser cooling. Science 358, 1078–1080 (2017).

    ADS  Google Scholar 

  111. 111.

    Urvoy, A., Vendeiro, Z., Ramette, J., Adiyatullin, A. & Vuletić, V. Direct laser cooling to Bose–Einstein condensation in a dipole trap. Phys. Rev. Lett. 122, 203202 (2019).

    ADS  Google Scholar 

  112. 112.

    Pinkse, P. W. H. et al. Adiabatically changing the phase-space density of a trapped Bose gas. Phys. Rev. Lett. 78, 990–993 (1997).

    ADS  Google Scholar 

  113. 113.

    Stamper-Kurn, D. M. et al. Reversible formation of a Bose–Einstein condensate. Phys. Rev. Lett. 81, 2194–2197 (1998).

    ADS  Google Scholar 

  114. 114.

    Sonderhouse, L. et al. Thermodynamics of a deeply degenerate SU(N)-symmetric Fermi gas. Nat. Phys. 16, 1216–1221 (2020).

    Google Scholar 

  115. 115.

    Robins, N., Altin, P., Debs, J. & Close, J. Atom lasers: production, properties and prospects for precision inertial measurement. Phys. Rep. 529, 265–296 (2013).

    ADS  Google Scholar 

  116. 116.

    Chikkatur, A. P. et al. A continuous source of Bose–Einstein condensed atoms. Science 296, 2193–2195 (2002).

    ADS  Google Scholar 

  117. 117.

    Miesner, H.-J. et al. Bosonic stimulation in the formation of a Bose–Einstein condensate. Science 279, 1005–1007 (1998).

    ADS  Google Scholar 

  118. 118.

    Robins, N. P., Figl, C., Jeppesen, M., Dennis, G. R. & Close, J. D. A pumped atom laser. Nat. Phys. 4, 731–736 (2008).

    Google Scholar 

  119. 119.

    Chen, C.-C. et al. Continuous Bose-Einstein condensation. Preprint at (2020).

  120. 120.

    Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. (2021).

  121. 121.

    Ott, H. Single atom detection in ultracold quantum gases: a review of current progress. Rep. Prog. Phys. 79, 054401 (2016).

    ADS  Google Scholar 

  122. 122.

    Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

    ADS  Google Scholar 

  123. 123.

    Olshanii, M. & Weiss, D. Producing Bose–Einstein condensates using optical lattices. Phys. Rev. Lett. 89, 090404 (2002).

    ADS  Google Scholar 

  124. 124.

    Tarbutt, M. R. Laser cooling of molecules. Contemp. Phys. 59, 356–376 (2018).

    ADS  Google Scholar 

  125. 125.

    Fitch, N. J. & Tarbutt, M. R. Laser cooled molecules. Preprint at (2021).

  126. 126.

    Barry, J. F., Shuman, E. S., Norrgard, E. B. & DeMille, D. Laser radiation pressure slowing of a molecular beam. Phys. Rev. Lett. 108, 103002 (2012).

    ADS  Google Scholar 

  127. 127.

    Hummon, M. T. et al. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).

    ADS  Google Scholar 

  128. 128.

    Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    ADS  Google Scholar 

  129. 129.

    Norrgard, E. B., McCarron, D. J., Steinecker, M. H., Tarbutt, M. R. & DeMille, D. Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap. Phys. Rev. Lett. 116, 063004 (2016).

    ADS  Google Scholar 

  130. 130.

    Williams, H. J. et al. Magnetic trapping and coherent control of laser-cooled molecules. Phys. Rev. Lett. 120, 163201 (2018).

    ADS  Google Scholar 

  131. 131.

    McCarron, D. J., Steinecker, M. H., Zhu, Y. & DeMille, D. Magnetic trapping of an ultracold gas of polar molecules. Phys. Rev. Lett. 121, 013202 (2018).

    ADS  Google Scholar 

  132. 132.

    Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    ADS  Google Scholar 

  133. 133.

    Ding, S., Wu, Y., Finneran, I. A., Burau, J. J. & Ye, J. Sub-Doppler cooling and compressed trapping of YO molecules at μK temperatures. Phys. Rev. X 10, 021049 (2020).

    Google Scholar 

  134. 134.

    Quéméner, G. & Julienne, P. S. Ultracold molecules under control! Chem. Rev. 112, 4949–5011 (2012).

    Google Scholar 

  135. 135.

    Lemeshko, M., Krems, R. V., Doyle, J. M. & Kais, S. Manipulation of molecules with electromagnetic fields. Mol. Phys. 111, 1648–1682 (2013).

    ADS  Google Scholar 

  136. 136.

    Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).

    ADS  Google Scholar 

  137. 137.

    Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).

    ADS  Google Scholar 

  138. 138.

    Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324–1327 (2020).

    ADS  Google Scholar 

  139. 139.

    Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006).

    ADS  Google Scholar 

  140. 140.

    Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    MathSciNet  MATH  ADS  Google Scholar 

  141. 141.

    De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    ADS  Google Scholar 

  142. 142.

    Schoene, E. A., Thorn, J. J. & Steck, D. A. Cooling atoms with a moving one-way barrier. Phys. Rev. A 82, 023419 (2010).

    ADS  Google Scholar 

  143. 143.

    Vuletić, V. & Chu, S. Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84, 3787–3790 (2000).

    ADS  Google Scholar 

  144. 144.

    Maunz, P. et al. Cavity cooling of a single atom. Nature 428, 50–52 (2004).

    ADS  Google Scholar 

  145. 145.

    Hosseini, M., Duan, Y., Beck, K. M., Chen, Y.-T. & Vuletić, V. Cavity cooling of many atoms. Phys. Rev. Lett. 118, 183601 (2017).

    ADS  Google Scholar 

  146. 146.

    Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892–895 (2020).

    ADS  Google Scholar 

  147. 147.

    Grimm, R., Ovchinnikov, Y. B., Sidorov, A. I. & Letokhov, V. S. Observation of a strong rectified dipole force in a bichromatic standing light wave. Phys. Rev. Lett. 65, 1415–1418 (1990).

    ADS  Google Scholar 

  148. 148.

    Söding, J., Grimm, R., Ovchinnikov, Y. B., Bouyer, P. & Salomon, C. Short-distance atomic beam deceleration with a stimulated light force. Phys. Rev. Lett. 78, 1420–1423 (1997).

    ADS  Google Scholar 

  149. 149.

    Corder, C., Arnold, B. & Metcalf, H. Laser cooling without spontaneous emission. Phys. Rev. Lett. 114, 043002 (2015).

    ADS  Google Scholar 

  150. 150.

    Schmidt-Kaler, F. et al. Laser cooling with electromagnetically induced transparency: application to trapped samples of ions or neutral atoms. Appl. Phys. B 73, 807–814 (2001).

    ADS  Google Scholar 

  151. 151.

    Eschner, J., Morigi, G., Schmidt-Kaler, F. & Blatt, R. Laser cooling of trapped ions. J. Opt. Soc. Am. B 20, 1003–1015 (2003).

    ADS  Google Scholar 

  152. 152.

    Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS  Google Scholar 

  153. 153.

    Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).

    ADS  Google Scholar 

  154. 154.

    Steck, D. Rubidium 87 D line data (Univ. Oregon, 2003);

  155. 155.

    Youn, S. H., Lu, M., Ray, U. & Lev, B. L. Dysprosium magneto-optical traps. Phys. Rev. A 82, 043425 (2010).

    ADS  Google Scholar 

Download references


We thank R. Spreeuw, B. van Linden van den Heuvell and S. Bennetts for helpful comments on the manuscript. We are grateful for funding from the NWO through Vici grant no. 680-47-619 and grant no. 680.92.18.05 (QuSim 2.0 programme) and from the European Union’s Horizon 2020 research and innovation programme under grant agreements no. 820404 (iqClock project) and no. 860579 (MoSaiQC project).

Author information



Corresponding author

Correspondence to Florian Schreck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schreck, F., Druten, K.v. Laser cooling for quantum gases. Nat. Phys. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing