Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence of topological boundary modes with topological nodal-point superconductivity

Abstract

Topological superconductors are an essential component for topologically protected quantum computation and information processing. Although signatures of topological superconductivity have been reported in heterostructures, material realizations of intrinsic topological superconductors are rather rare. Here we use scanning tunnelling spectroscopy to study the transition metal dichalcogenide 4Hb-TaS2 that interleaves superconducting 1H-TaS2 layers with strongly correlated 1T-TaS2 layers, and find spectroscopic evidence for the existence of topological surface superconductivity. These include edge modes running along the 1H-layer terminations as well as under the 1T-layer terminations, where they separate between superconducting regions of distinct topological nature. We also observe signatures of zero-bias states in vortex cores. All the boundary modes exhibit crystallographic anisotropy, which—together with a finite in-gap density of states throughout the 1H layers—allude to the presence of a topological nodal-point superconducting state. Our theoretical modelling attributes this phenomenology to an inter-orbital pairing channel that necessitates the combination of surface mirror symmetry breaking and strong interactions. It, thus, suggests a topological superconducting state realized in a natural compound.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CDW, superconductivity and ZBC peaks in vortex cores.
Fig. 2: Spectroscopic mapping of the dispersing edge mode on 1H step edges.
Fig. 3: Spectroscopic mapping of the anisotropic edge mode below 1T step edges.
Fig. 4: Topological nodal superconductivity induced by inter-orbital pairing.

Similar content being viewed by others

Data availability

The data needed to reproduce the main text figures are available on Zenodo (https://doi.org/10.5281/zenodo.5229526).

Code availability

The codes used in theoretical simulations and calculations are available from the corresponding authors upon reasonable request.

References

  1. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  2. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018).

    Article  Google Scholar 

  4. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Article  Google Scholar 

  5. Jäck, B. et al. Observation of a Majorana zero mode in a topologically protected edge channel. Science 364, 1255–1259 (2019).

    Article  Google Scholar 

  6. Fornieri, A. et al. Evidence of topological superconductivity in planar Josephson junctions. Nature 569, 89–92 (2019).

    Article  Google Scholar 

  7. Ren, H. et al. Topological superconductivity in a phase-controlled Josephson junction. Nature 569, 93–98 (2019).

    Article  Google Scholar 

  8. Yin, J.-X. et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se). Nat. Phys. 11, 543–546 (2015).

    Article  Google Scholar 

  9. Kong, L. et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 15, 1181–1187 (2019).

    Article  Google Scholar 

  10. Zhu, S. et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science 367, 189–192 (2019).

    Google Scholar 

  11. Liu, Q. et al. Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16) OHFeSe. Phys. Rev. X 8, 041056 (2018).

    Google Scholar 

  12. Chen, C. et al. Atomic line defects and zero-energy end states in monolayer Fe(Te,Se) high-temperature superconductors. Nat. Phys. 16, 536–540 (2020).

  13. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  14. Schnyder, A. P. & Brydon, P. M. R. Topological surface states in nodal superconductors. J. Phys. Condens. Matter 27, 243201 (2015).

    Article  ADS  Google Scholar 

  15. Sato, M. & Ando, Y. Topological superconductors: a review. Rep. Prog. Phys. 80, 076501 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  16. Ménard, G. C. et al. Two-dimensional topological superconductivity in Pb/Co/Si(111). Nat. Commun. 8, 2040 (2017).

    Article  ADS  Google Scholar 

  17. Palacio-Morales, A. et al. Atomic-scale interface engineering of Majorana edge modes in a 2D magnet-superconductor hybrid system. Sci. Adv. 5, eaav6600 (2019).

    Article  ADS  Google Scholar 

  18. Kezilebieke, S. et al. Topological superconductivity in a van der Waals heterostructure. Nature 588, 424–428 (2020).

    Article  Google Scholar 

  19. Yuan, Y. et al. Evidence of anisotropic Majorana bound states in 2M-WS2. Nat. Phys. 15, 1046–1051 (2019).

    Article  Google Scholar 

  20. Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523–527 (2020).

    Article  Google Scholar 

  21. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  Google Scholar 

  22. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article  Google Scholar 

  23. de la Barrera, S. C. et al. Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 9, 1427 (2018).

    Article  ADS  Google Scholar 

  24. Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018).

    Article  Google Scholar 

  25. Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    Article  MathSciNet  Google Scholar 

  26. Yuan, N. F., Mak, K. F. & Law, K. T. Possible topological superconducting phases of MoS2. Phys. Rev. Lett. 113, 097001 (2014).

    Article  ADS  Google Scholar 

  27. Zhou, B. T., Yuan, N. F., Jiang, H. L. & Law, K. T. Ising superconductivity and Majorana fermions in transition-metal dichalcogenides. Phys. Rev. B 93, 180501 (2016).

    Article  ADS  Google Scholar 

  28. Hsu, Y.-T., Vaezi, A., Fischer, M. H. & Kim, E.-A. Topological superconductivity in monolayer transition metal dichalcogenides. Nat. Commun. 8, 14985 (2017).

    Article  ADS  Google Scholar 

  29. He, W.-Y. et al. Magnetic field driven nodal topological superconductivity in monolayer transition metal dichalcogenides. Commun. Phys. 1, 40 (2018).

    Article  Google Scholar 

  30. Fischer, M. H., Sigrist, M. & Agterberg, D. F. Superconductivity without inversion and time-reversal symmetries. Phys. Rev. Lett. 121, 157003 (2018).

    Article  ADS  Google Scholar 

  31. Hsu, Y. T., Cole, W. S., Zhang, R. X. & Sau, J. D. Inversion-protected higher-order topological superconductivity in monolayer WTe2. Phys. Rev. Lett. 125, 097001 (2020).

    Article  ADS  Google Scholar 

  32. Kanasugi, S. & Yanase, Y. Multiple odd-parity superconducting phases in bilayer transition metal dichalcogenides. Phys. Rev. B 102, 094507 (2020).

    Article  ADS  Google Scholar 

  33. Shaffer, D., Kang, J., Burnell, F. J. & Fernandes, R. M. Crystalline nodal topological superconductivity and Bogolyubov Fermi surfaces in monolayer NbSe2. Phys. Rev. B 101, 224503 (2020).

    Article  ADS  Google Scholar 

  34. Margalit, G., Berg, E. & Oreg, Y. Theory of multi-orbital topological superconductivity in transition metal dichalcogenides. Ann. Phys. https://doi.org/10.1016/j.aop.2021.168561 (in the press).

  35. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  36. Law, K. T. & Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl Acad. Sci. USA 114, 6996–7000 (2017).

    Article  Google Scholar 

  37. Ribak, A. et al. Chiral superconductivity in the alternate stacking compound 4Hb-TaS2. Sci. Adv. 6, eaax9480 (2020).

    Article  ADS  Google Scholar 

  38. Gao, Y., Su, W.-P. & Zhu, J.-X. Interorbital pairing and its physical consequences for iron pnictide superconductors. Phys. Rev. B 81, 104504 (2010).

    Article  ADS  Google Scholar 

  39. Wang, F. & Lee, D.-H. Topological relation between bulk gap nodes and surface bound states: application to iron-based superconductors. Phys. Rev. B 86, 094512 (2012).

    Article  ADS  Google Scholar 

  40. Fukaya, Y. et al. Interorbital topological superconductivity in spin-orbit coupled superconductors with inversion symmetry breaking. Phys. Rev. B 97, 174522 (2018).

    Article  ADS  Google Scholar 

  41. Di Salvo, F. J., Bagley, B. G., Voorhoeve, J. M. & Waszczak, J. V. Preparation and properties of a new polytype of tantalum disulfide (4Hb-TaS2). J. Phys. Chem. Solids 34, 1357–1362 (1973).

  42. Tanaka, M. et al. Study of 4Hb-TaS2 and graphite intercalation compound by STM/STS. J. Microsc. 152, 183–192 (1988).

    Article  Google Scholar 

  43. Kim, J. J. & Olin, H. Atomic- and electronic-structure study on the layers of 4Hb-TaS2 prepared by a layer-by-layer etching technique. Phys. Rev. B 52, R14388(R) (1995).

    Article  ADS  Google Scholar 

  44. Fujisawa, Y. et al. Superposition of \(\sqrt{13}\times \sqrt{13}\) and 3 × 3 supermodulations in TaS2 probed by scanning tunneling microscopy. J. Phys. Conf. Ser. 969, 012053 (2018).

    Article  Google Scholar 

  45. Wijayaratne, K. et al. Spectroscopic signature of moment-dependent electron–phonon coupling in 2H-TaS2. J. Mater. Chem. C 5, 11310 (2017).

    Article  Google Scholar 

  46. Reiner, J. et al. Spectroscopic visualization of a robust electronic response of semiconducting nanowires to deposition of superconducting islands. Phys. Rev. X 10, 011002 (2020).

    Google Scholar 

  47. Hess, H. F., Robinson, R. B., Dynes, R. C., Valles, J. M. & Waszczak, J. V. Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214 (1989).

    Article  ADS  Google Scholar 

  48. Möckli, D. & Khodas, M. Robust parity-mixed superconductivity in disordered monolayer transition metal dichalcogenides. Phys. Rev. B 98, 144518 (2018).

    Article  ADS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  50. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  51. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

N.A., H.B. and B.Y acknowledge the German-Israeli Foundation for Scientific Research and Development (GIF grant no. I-1364-303.7/2016). H.B. and N.A. acknowledge the European Research Council (ERC, project no. TOPO NW). B.Y. acknowledges financial support by the European Research Council (ERC Consolidator Grant, no. 815869), the Israel Science Foundation (ISF nos. 1251/19, 3520/20 and 2932/21) and the Willner Family Leadership Institute for the Weizmann Institute of Science, the Benoziyo Endowment Fund for the Advancement of Science, the Ruth and Herman Albert Scholars Program for New Scientists, and the Israel Science Foundation (ISF 1251/19). G.A.F. gratefully acknowledges partial support from the National Science Foundation through NSF grant nos. DMR-1720595 and DMR-1949701. Y.O. acknowledges partial support through the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement LEGOTOP no. 788715), the ISF Quantum Science and Technology (2074/19), the BSF and NSF (2018643), and the CRC/Transregio 183. A.K. acknowledges the Israel Science Foundation (ISF 320/17).

Author information

Authors and Affiliations

Authors

Contributions

A.K.N., A.S. and Y.R. acquired and analysed the data. A.K., N.A. and H.B. conceived the experiments. J.K. and B.Y. calculated the ab initio model. G.M., G.A.F., B.Y. and Y.O. calculated the theoretical model. I.F., A.A. and A.K. grew the material. A.K.N., N.A. and H.B. wrote the manuscript with substantial contributions from all the authors.

Corresponding authors

Correspondence to Nurit Avraham or Haim Beidenkopf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewer for their contribution to the peer review of this work

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28 and Sections 1–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, A.K., Steinbok, A., Roet, Y. et al. Evidence of topological boundary modes with topological nodal-point superconductivity. Nat. Phys. 17, 1413–1419 (2021). https://doi.org/10.1038/s41567-021-01376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01376-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing