Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum gas microscopy for single atom and spin detection

Abstract

A particular strength of ultracold quantum gases is the range of versatile detection methods that are available. As they are based on atom–light interactions, the whole quantum optics toolbox can be used to tailor the detection process to the specific scientific question to be explored in the experiment. Common methods include time-of-flight measurements to access the momentum distribution of the gas, the use of cavities to monitor global properties of the quantum gas with minimal disturbance, and phase-contrast or high-intensity absorption imaging to obtain local real-space information in high-density settings. Even the ultimate limit of detecting each and every atom locally has been realized in two dimensions using so-called quantum gas microscopes. In fact, these microscopes have not only revolutionized detection—they have also revolutionized the control of lattice gases. Here, we provide a short overview of quantum gas microscopy, highlighting the new observables it can access as well as key experiments that have been enabled by its development.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Quantum gas microscopy.
Fig. 2: Equilibrium physics of strongly interacting lattice fermions.
Fig. 3: Dynamics of strongly interacting lattice fermions.
Fig. 4: Future directions for quantum gas microscopy.

References

  1. 1.

    Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Google Scholar 

  2. 2.

    Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    ADS  Google Scholar 

  3. 3.

    Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    ADS  Google Scholar 

  4. 4.

    Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    ADS  Google Scholar 

  5. 5.

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Google Scholar 

  6. 6.

    Stringari, S., Inguscio, M. & Wieman, C. E. (eds) Making, probing and understanding Bose–Einstein condensates. In Proc. International School of PhysicsEnrico Fermi’ Vol. 140, 67–176 (IOS, 1999).

  7. 7.

    Inguscio, M., Ketterle, W. & Salomon, C. (eds) Making, probing and understanding ultracold Fermi gases. In Proc. International School of PhysicsEnrico Fermi’, Course CLXIV 95–287 (IOS, 2006).

  8. 8.

    Gemelke, N., Zhang, X., Hung, C.-L. & Chin, C. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Nature 460, 995–998 (2009).

    ADS  Google Scholar 

  9. 9.

    Cocchi, E. et al. Equation of state of the two-dimensional Hubbard model. Phys. Rev. Lett. 116, 175301 (2016).

    ADS  Google Scholar 

  10. 10.

    Schlosser, N., Reymond, G., Protsenko, I. & Grangier, P. Sub-Poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001).

    ADS  Google Scholar 

  11. 11.

    Miroshnychenko, Y. et al. Continued imaging of the transport of a single neutral atom. Opt. Express 11, 3498–3502 (2003).

    ADS  Google Scholar 

  12. 12.

    Nelson, K. D., Li, X. & Weiss, D. S. Imaging single atoms in a three-dimensional array. Nat. Phys. 3, 556–560 (2007).

    Google Scholar 

  13. 13.

    Serwane, F. et al. Deterministic preparation of a tunable few-fermion system. Science 332, 336–338 (2011).

    ADS  Google Scholar 

  14. 14.

    Hume, D. et al. Accurate atom counting in mesoscopic ensembles. Phys. Rev. Lett. 111, 253001 (2013).

    ADS  Google Scholar 

  15. 15.

    Würtz, P., Langen, T., Gericke, T., Koglbauer, A. & Ott, H. Experimental demonstration of single-site addressability in a two-dimensional optical lattice. Phys. Rev. Lett. 103, 080404 (2009).

    ADS  Google Scholar 

  16. 16.

    Lopes, R. et al. Atomic Hong–Ou–Mandel experiment. Nature 520, 66–68 (2015).

    ADS  Google Scholar 

  17. 17.

    Hodgman, S. S., Khakimov, R. I., Lewis-Swan, R. J., Truscott, A. G. & Kheruntsyan, K. V. Solving the quantum many-body problem via correlations measured with a momentum microscope. Phys. Rev. Lett. 118, 240402 (2017).

    ADS  Google Scholar 

  18. 18.

    Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

    ADS  Google Scholar 

  19. 19.

    Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    ADS  Google Scholar 

  20. 20.

    Cheuk, L. W. et al. Quantum-gas microscope for fermionic atoms. Phys. Rev. Lett. 114, 193001 (2015).

    ADS  Google Scholar 

  21. 21.

    Haller, E. et al. Single-atom imaging of fermions in a quantum-gas microscope. Nat. Phys. 11, 738–742 (2015).

    Google Scholar 

  22. 22.

    Parsons, M. F. et al. Site-resolved imaging of fermionic in an optical lattice. Phys. Rev. Lett. 114, 213002 (2015).

    ADS  Google Scholar 

  23. 23.

    Edge, G. J. A. et al. Imaging and addressing of individual fermionic atoms in an optical lattice. Phys. Rev. A 92, 063406 (2015).

    ADS  Google Scholar 

  24. 24.

    Omran, A. et al. Microscopic observation of Pauli blocking in degenerate fermionic lattice gases. Phys. Rev. Lett. 115, 263001 (2015).

    ADS  Google Scholar 

  25. 25.

    Greif, D. et al. Site-resolved imaging of a fermionic Mott insulator. Science 351, 953–957 (2016).

    ADS  Google Scholar 

  26. 26.

    Cheuk, L. W. et al. Observation of 2D fermionic Mott insulators of 40K with single-site resolution. Phys. Rev. Lett. 116, 235301 (2016).

    ADS  Google Scholar 

  27. 27.

    Cheuk, L. W. et al. Observation of spatial charge and spin correlations in the 2D Fermi–Hubbard model. Science 353, 1260–1264 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  28. 28.

    Parsons, M. F. et al. Site-resolved measurement of the spin-correlation function in the Fermi–Hubbard model. Science 353, 1253–1256 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  29. 29.

    Boll, M. et al. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi–Hubbard chains. Science 353, 1257–1260 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  30. 30.

    Brown, P. T. et al. Spin-imbalance in a 2D Fermi–Hubbard system. Science 357, 1385–1388 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  31. 31.

    Truscott, A. G. Observation of Fermi pressure in a gas of trapped atoms. Science 291, 2570–2572 (2001).

    ADS  Google Scholar 

  32. 32.

    Sanner, C. et al. Suppression of density fluctuations in a quantum degenerate Fermi gas. Phys. Rev. Lett. 105, 040402 (2010).

    ADS  Google Scholar 

  33. 33.

    Müller, T. et al. Local observation of antibunching in a trapped Fermi gas. Phys. Rev. Lett. 105, 040401 (2010).

    ADS  Google Scholar 

  34. 34.

    Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).

    ADS  Google Scholar 

  35. 35.

    Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008).

    ADS  Google Scholar 

  36. 36.

    Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L. & Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 340, 1307–1310 (2013).

    ADS  Google Scholar 

  37. 37.

    Hart, R. A. et al. Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms. Nature 519, 211–214 (2015).

    ADS  Google Scholar 

  38. 38.

    Endres, M. et al. Observation of correlated particle–hole pairs and string order in low-dimensional Mott insulators. Science 334, 200–203 (2011).

    ADS  Google Scholar 

  39. 39.

    Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).

    ADS  Google Scholar 

  40. 40.

    Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).

    ADS  Google Scholar 

  41. 41.

    Lukin, A. et al. Probing entanglement in a many-body-localized system. Science 364, 256–260 (2019).

    ADS  Google Scholar 

  42. 42.

    Rispoli, M. et al. Quantum critical behaviour at the many-body localization transition. Nature 573, 385–389 (2019).

    ADS  Google Scholar 

  43. 43.

    Hilker, T. A. et al. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators. Science 357, 484–487 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  44. 44.

    Koepsell, J. et al. Imaging magnetic polarons in the doped Fermi–Hubbard model. Nature 572, 358–362 (2019).

    ADS  Google Scholar 

  45. 45.

    Chiu, C. S. et al. String patterns in the doped Hubbard model. Science 365, 251–256 (2019).

    ADS  MathSciNet  MATH  Google Scholar 

  46. 46.

    Gring, M. et al. Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012).

    ADS  Google Scholar 

  47. 47.

    Schweigler, T. et al. Experimental characterization of a quantum many-body system via higher-order correlations. Nature 545, 323–326 (2017).

    ADS  Google Scholar 

  48. 48.

    Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).

    ADS  Google Scholar 

  49. 49.

    Zupancic, P. et al. Ultra-precise holographic beam shaping for microscopic quantum control. Opt. Express 24, 13881–13893 (2016).

    ADS  Google Scholar 

  50. 50.

    Weitenberg, C., Kuhr, S., Mølmer, K. & Sherson, J. F. Quantum computation architecture using optical tweezers. Phys. Rev. A 84, 032322 (2011).

    ADS  Google Scholar 

  51. 51.

    Miranda, M., Inoue, R., Okuyama, Y., Nakamoto, A. & Kozuma, M. Site-resolved imaging of ytterbium atoms in a two-dimensional optical lattice. Phys. Rev. A 91, 063414 (2015).

    ADS  Google Scholar 

  52. 52.

    Yamamoto, R., Kobayashi, J., Kuno, T., Kato, K. & Takahashi, Y. An ytterbium quantum gas microscope with narrow-line laser cooling. N. J. Phys. 18, 023016 (2016).

    Google Scholar 

  53. 53.

    Monroe, C. et al. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75, 4011–4014 (1995).

    ADS  Google Scholar 

  54. 54.

    Hamann, S. E. et al. Resolved-sideband Raman cooling to the ground state of an optical lattice. Phys. Rev. Lett. 80, 4149–4152 (1998).

    ADS  Google Scholar 

  55. 55.

    Kerman, A., Vuletić, V., Chin, C. & Chu, S. Beyond optical molasses: 3D Raman sideband cooling of atomic cesium to high phase-space density. Phys. Rev. Lett. 84, 439–442 (2000).

    ADS  Google Scholar 

  56. 56.

    Koepsell, J. et al. Robust bilayer charge pumping for spin- and density-resolved quantum gas microscopy. Phys. Rev. Lett. 125, 010403 (2020).

    ADS  Google Scholar 

  57. 57.

    Gallagher, A. & Pritchard, D. E. Exoergic collisions of cold Na–Na. Phys. Rev.Lett. 63, 957–960 (1989).

    ADS  Google Scholar 

  58. 58.

    Endres, M. et al. Single-site- and single-atom-resolved measurement of correlation functions. Appl. Phys. B 113, 27–39 (2013).

    Google Scholar 

  59. 59.

    Shotter, M. D. Design of a technique to measure the density of ultracold atoms in a short-period optical lattice in three dimensions with single-atom sensitivity. Phys. Rev. A 83, 033617 (2011).

    ADS  Google Scholar 

  60. 60.

    Sebby-Strabley, J., Anderlini, M., Jessen, P. & Porto, J. Lattice of double wells for manipulating pairs of cold atoms. Phys. Rev. A 73, 033605 (2006).

    ADS  Google Scholar 

  61. 61.

    Fölling, S. et al. Direct observation of second-order atom tunnelling. Nature 448, 1029–1032 (2007).

    ADS  Google Scholar 

  62. 62.

    Trotzky, S., Chen, Y.-A., Schnorrberger, U., Cheinet, P. & Bloch, I. Controlling and detecting spin correlations of ultracold atoms in optical lattices. Phys. Rev. Lett. 105, 265303 (2010).

    ADS  Google Scholar 

  63. 63.

    Salomon, G. et al. Direct observation of incommensurate magnetism in Hubbard chains. Nature 565, 56–60 (2019).

    ADS  Google Scholar 

  64. 64.

    Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    ADS  Google Scholar 

  65. 65.

    Cheneau, M. et al. Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484–487 (2012).

    ADS  Google Scholar 

  66. 66.

    Fukuhara, T. et al. Spatially resolved detection of a spin-entanglement wave in a Bose–Hubbard chain. Phys. Rev. Lett. 115, 035302 (2015).

    ADS  Google Scholar 

  67. 67.

    Endres, M. et al. The Higgs amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 487, 454–458 (2012).

    ADS  Google Scholar 

  68. 68.

    Ma, R. et al. Photon-assisted tunneling in a biased strongly correlated Bose gas. Phys. Rev. Lett. 107, 095301 (2011).

    ADS  Google Scholar 

  69. 69.

    Rubio-Abadal, A. et al. Floquet prethermalization in a Bose–Hubbard system. Phys. Rev. X 10, 021044 (2020).

    Google Scholar 

  70. 70.

    Williams, R. A. et al. Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms. Opt. Express 16, 16977–16983 (2008).

    ADS  Google Scholar 

  71. 71.

    Miranda, M., Inoue, R., Tambo, N. & Kozuma, M. Site-resolved imaging of a bosonic Mott insulator using ytterbium atoms. Phys. Rev. A 96, 043626 (2017).

    ADS  Google Scholar 

  72. 72.

    Bücker, R. et al. Single-particle-sensitive imaging of freely propagating ultracold atoms. N. J. Phys. 11, 103039 (2009).

    Google Scholar 

  73. 73.

    Bergschneider, A. et al. Experimental characterization of two-particle entanglement through position and momentum correlations. Nat. Phys. 15, 640–644 (2019).

    Google Scholar 

  74. 74.

    Wang, Y., Kumar, A., Wu, T.-Y. & Weiss, D. S. Single-qubit gates based on targeted phase shifts in a 3D neutral atom array. Science 352, 1562–1565 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  75. 75.

    Mazurenko, A. et al. A cold-atom Fermi–Hubbard antiferromagnet. Nature 545, 462–466 (2017).

    ADS  Google Scholar 

  76. 76.

    Choi, J.-Y. et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  77. 77.

    Rubio-Abadal, A. et al. Many-body delocalization in the presence of a quantum bath. Phys. Rev. X 9, 041014 (2019).

    Google Scholar 

  78. 78.

    Brown, P. T. et al. Bad metallic transport in a cold atom Fermi–Hubbard system. Science 363, 379–382 (2019).

    ADS  Google Scholar 

  79. 79.

    Guardado-Sanchez, E. et al. Subdiffusion and heat transport in a tilted two-dimensional Fermi–Hubbard system. Phys. Rev. X 10, 011042 (2020).

    Google Scholar 

  80. 80.

    Hild, S. et al. Far-from-equilibrium spin transport in Heisenberg quantum magnets. Phys. Rev. Lett. 113, 147205 (2014).

    ADS  Google Scholar 

  81. 81.

    Fukuhara, T. et al. Quantum dynamics of a mobile spin impurity. Nat. Phys. 9, 235–241 (2013).

    Google Scholar 

  82. 82.

    Fukuhara, T. et al. Microscopic observation of magnon bound states and their dynamics. Nature 502, 76–79 (2013).

    ADS  Google Scholar 

  83. 83.

    Vijayan, J. et al. Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains. Science 367, 186–189 (2020).

    ADS  Google Scholar 

  84. 84.

    Preiss, P. M. et al. Strongly correlated quantum walks in optical lattices. Science 347, 1229–1233 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  85. 85.

    Ji, G. et al. Coupling a mobile hole to an antiferromagnetic spin background: Transient dynamics of a magnetic polaron. Phys. Rev. X 11, 021022 (2021).

    Google Scholar 

  86. 86.

    Tai, M. E. et al. Microscopy of the interacting Harper–Hofstadter model in the two-body limit. Nature 546, 519–523 (2017).

    ADS  Google Scholar 

  87. 87.

    Yang, J., Liu, L., Mongkolkiattichai, J. & Schauss, P. Site-resolved imaging of ultracold fermions in a triangular-lattice quantum gas microscope. PRX Quantum 2, 020344 (2021).

    ADS  Google Scholar 

  88. 88.

    Yamamoto, R., Ozawa, H., Nak, D. C., Nakamura, I. & Fukuhara, T. Single-site-resolved imaging of ultracold atoms in a triangular optical lattice. New J. Phys. 22, 123028 (2020).

    ADS  Google Scholar 

  89. 89.

    Stewart, J. T., Gaebler, J. P. & Jin, D. S. Using photoemission spectroscopy to probe a strongly interacting Fermi gas. Nature 454, 744–747 (2008).

    ADS  Google Scholar 

  90. 90.

    Gaebler, J. P. et al. Observation of pseudogap behaviour in a strongly interacting Fermi gas. Nat. Phys. 6, 569–573 (2010).

    Google Scholar 

  91. 91.

    Sagi, Y., Drake, T. E., Paudel, R., Chapurin, R. & Jin, D. S. Breakdown of the Fermi liquid description for strongly interacting fermions. Phys. Rev. Lett. 114, 075301 (2015).

    ADS  Google Scholar 

  92. 92.

    Brown, P. T. et al. Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system. Nat. Phys. 16, 26–31 (2020).

    Google Scholar 

  93. 93.

    Bohrdt, A., Greif, D., Demler, E., Knap, M. & Grusdt, F. Angle-resolved photoemission spectroscopy with quantum gas microscopes. Phys. Rev. B 97, 125117 (2018).

    ADS  Google Scholar 

  94. 94.

    Preiss, P. M., Ma, R., Tai, M. E., Simon, J. & Greiner, M. Quantum gas microscopy with spin, atom-number and multilayer readout. Phys. Rev. A 91, 041602 (2015).

    ADS  Google Scholar 

  95. 95.

    Hartke, T., Oreg, B., Jia, N. & Zwierlein, M. Doublon-hole correlations and fluctuation thermometry in a Fermi–Hubbard gas. Phys. Rev. Lett. 125, 113601 (2020).

    ADS  Google Scholar 

  96. 96.

    Gall, M., Wurz, N., Samland, J., Chan, C. F. & Köhl, M. Competing magnetic orders in a bilayer Hubbard model with ultracold atoms. Nature 589, 40–43 (2021).

    ADS  Google Scholar 

  97. 97.

    Kaufman, A. M., Lester, B. J. & Regal, C. A. Cooling a single atom in an optical tweezer to its quantum ground state. Phys. Rev. X 2, 041014 (2012).

    Google Scholar 

  98. 98.

    Thompson, J. D., Tiecke, T. G., Zibrov, A. S., Vuletić, V. & Lukin, M. D. Coherence and Raman sideband cooling of a single atom in an optical tweezer. Phys. Rev. Lett. 110, 133001 (2013).

    ADS  Google Scholar 

  99. 99.

    Kaufman, A. M. et al. Two-particle quantum interference in tunnel-coupled optical tweezers. Science 345, 306–309 (2014).

    ADS  MathSciNet  MATH  Google Scholar 

  100. 100.

    Murmann, S. et al. Two fermions in a double well: exploring a fundamental building block of the Hubbard model. Phys. Rev. Lett. 114, 080402 (2015).

    ADS  Google Scholar 

  101. 101.

    Keßler, S. & Marquardt, F. Single-site-resolved measurement of the current statistics in optical lattices. Phys. Rev. A 89, 061601 (2014).

    ADS  Google Scholar 

  102. 102.

    Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004).

    ADS  Google Scholar 

  103. 103.

    Widera, A. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).

    ADS  Google Scholar 

  104. 104.

    Ma, R. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    ADS  Google Scholar 

  105. 105.

    Rey, A. M. et al. Controlled preparation and detection of d-wave superfluidity in two-dimensional optical superlattices. Europhys. Lett. 87, 60001 (2009).

    ADS  Google Scholar 

  106. 106.

    Schauß, P. et al. Observation of spatially ordered structures in a two-dimensional Rydberg gas. Nature 491, 87–91 (2012).

    ADS  Google Scholar 

  107. 107.

    Zeiher, J. et al. Coherent many-body spin dynamics in a long-range interacting Ising chain. Phys. Rev. X 7, 041063 (2017).

    Google Scholar 

  108. 108.

    Guardado-Sanchez, E. et al. Probing the quench dynamics of antiferromagnetic correlations in a 2D quantum Ising spin system. Phys. Rev. X 8, 021069 (2018).

    Google Scholar 

  109. 109.

    Hollerith, S. et al. Quantum gas microscopy of Rydberg macrodimers. Science 364, 664–667 (2019).

    ADS  Google Scholar 

  110. 110.

    Rui, J. et al. A subradiant optical mirror formed by a single structured atomic layer. Nature 583, 369–374 (2020).

    ADS  Google Scholar 

  111. 111.

    Zhang, X. et al. Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism. Science 345, 1467–1473 (2014).

    ADS  Google Scholar 

  112. 112.

    Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  113. 113.

    Hofrichter, C. et al. Direct probing of the Mott crossover in the SU(N) Fermi–Hubbard model. Phys. Rev. X 6, 021030 (2016).

    Google Scholar 

  114. 114.

    Ozawa, H., Taie, S., Takasu, Y. & Takahashi, Y. Antiferromagnetic spin correlation of SU(N) Fermi gas in an optical superlattice. Phys. Rev. Lett. 121, 225303 (2018).

    ADS  Google Scholar 

  115. 115.

    Subhankar, S., Wang, Y., Tsui, T.-C., Rolston, S. L. & Porto, J. V. Nanoscale atomic density microscopy. Phys. Rev. X 9, 021002 (2019).

    Google Scholar 

  116. 116.

    McDonald, M., Trisnadi, J., Yao, K.-X. & Chin, C. Superresolution microscopy of cold atoms in an optical lattice. Phys. Rev. X 9, 021001 (2019).

    Google Scholar 

  117. 117.

    Stecker, M., Schefzyk, H., Fortágh, J. & Günther, A. A high resolution ion microscope for cold atoms. N. J. Phys. 19, 043020 (2017).

    Google Scholar 

  118. 118.

    Veit, C. et al. Pulsed ion microscope to probe quantum gases. Phys. Rev. X 11, 011036 (2021).

    MathSciNet  Google Scholar 

  119. 119.

    Nichols, M. A. et al. Spin transport in a Mott insulator of ultracold fermions. Science 363, 383–387 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

W.S.B. acknowledges funding from the National Science Foundation (grants DMR-1607277 and PHY-1912154), the David and Lucile Packard Foundation (grant 2016-65128) and the AFOSR Young Investigator Research Program (grant FA9550-16-1-0269). C.G. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 817482 (PASQuanS), the European Research Council (ERC) 678580 (RyD-QMB), the Deutsche Forschungsgemeinschaft (SPP 1929 – GiRyd) and the Alfried Krupp von Bohlen und Halbach Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christian Gross.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gross, C., Bakr, W.S. Quantum gas microscopy for single atom and spin detection. Nat. Phys. 17, 1316–1323 (2021). https://doi.org/10.1038/s41567-021-01370-5

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing