Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum-torque-induced breaking of magnetic interfaces in ultracold gases


A rich variety of physical effects in spin dynamics arise at the interface between different magnetic materials1. Engineered systems with interlaced magnetic structures have been used to implement spin transistors, memories and other spintronic devices2,3. However, experiments in solid-state systems can be difficult to interpret because of disorder and losses. Here we realize analogues of magnetic junctions using a coherently coupled mixture of ultracold bosonic gases. The spatial inhomogeneity of the atomic gas makes the system change its behaviour from regions with oscillating magnetization—resembling a magnetic material in the presence of an external transverse field—to regions with a defined magnetization, similar to magnetic materials with ferromagnetic anisotropy stronger than external fields. Starting from a far-from-equilibrium fully polarized state, magnetic interfaces rapidly form. At the interfaces, we observe the formation of short-wavelength magnetic waves. They are generated by a quantum torque contribution to the spin current and produce strong spatial anticorrelations in the magnetization. Our results establish ultracold gases as a platform for the study of far-from-equilibrium spin dynamics in regimes that are not easily accessible in solid-state systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analogy between a coherently coupled atomic mixture and a magnetic heterostructure.
Fig. 2: Quantum torque effect at the interface.
Fig. 3: Evolution of magnetization.
Fig. 4: Correlation of magnetization.

Data availability

Source data are provided with this paper. The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. Zabel, H. & Bader, S. D. (eds) Magnetic Heterostructures: Advances and Perspectives in Spinstructures and Spintransport (Springer, 2007).

  2. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  Google Scholar 

  3. Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nat. Mater. 13, 11–20 (2014).

    Article  Google Scholar 

  4. Landau, L. & Lifshitz, E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8, 153 (1935).

  5. Bar'yakhtar, V. G. & Ivanov, B. A. The Landau-Lifshitz equation: 80 years of history, advances, and prospects. Low Temp. Phys. 41, 663 (2015).

    Article  ADS  Google Scholar 

  6. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    Article  Google Scholar 

  7. Smerzi, A., Fantoni, S., Giovanazzi, S. & Shenoy, S. R. Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates. Phys. Rev. Lett. 79, 4950 (1997).

    Article  ADS  Google Scholar 

  8. Nikuni, T. & Williams, J. E. Kinetic theory of a spin-1/2 Bose-condensed gas. J. Low Temp. Phys. 133, 323–375 (2003).

    Article  Google Scholar 

  9. Pigneur, M. & Schmiedmayer, J. Analytical pendulum model for a bosonic Josephson junction. Phys. Rev. A 98, 063632 (2018).

    Article  ADS  Google Scholar 

  10. Zibold, T., Nicklas, E., Gross, C. & Oberthaler, M. K. Classical bifurcation at the transition from Rabi to Josephson dynamics. Phys. Rev. Lett. 105, 204101 (2010).

    Article  ADS  Google Scholar 

  11. Albiez, M. et al. Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005).

    Article  ADS  Google Scholar 

  12. Matthews, M. R. et al. Watching a superfluid untwist itself: recurrence of Rabi oscillations in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 3358 (1999).

    Article  ADS  Google Scholar 

  13. Nicklas, E. et al. Rabi flopping induces spatial demixing dynamics. Phys. Rev. Lett. 107, 193001 (2011).

    Article  ADS  Google Scholar 

  14. LeBlanc, L. J. et al. Dynamics of a tunable superfluid junction. Phys. Rev. Lett. 106, 025302 (2011).

    Article  ADS  Google Scholar 

  15. Spagnolli, G. et al. Crossing over from attractive to repulsive interactions in a tunneling bosonic Josephson junction. Phys. Rev. Lett. 118, 230403 (2017).

    Article  ADS  Google Scholar 

  16. Pigneur, M. et al. Relaxation to a phase-locked equilibrium state in a one-dimensional bosonic Josephson junction. Phys. Rev. Lett. 120, 173601 (2018).

    Article  ADS  Google Scholar 

  17. Mennemann, J.-F. et al. Relaxation in an extended bosonic Josephson junction. Phys. Rev. Res. 3, 023197 (2021).

    Article  Google Scholar 

  18. Luick, N. et al. An ideal Josephson junction in an ultracold two-dimensional Fermi gas. Science 369, 89–91 (2020).

    Article  Google Scholar 

  19. Kwon, W. J. et al. Strongly correlated superfluid order parameters from d.c. Josephson supercurrents. Science 369, 84–88 (2020).

    Article  Google Scholar 

  20. Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation and Superfluidity (Oxford Univ. Press, 2016).

  21. Kosevich, A., Ivanov, B. & Kovalev, A. Magnetic solitons. Phys. Rep. 194, 117–238 (1990).

    Article  Google Scholar 

  22. Congy, T., Kamchatnov, A. M. & Pavloff, N. Dispersive hydrodynamics of nonlinear polarization waves in two-component Bose–Einstein condensates. SciPost Phys. 1, 006 (2016).

    Article  ADS  Google Scholar 

  23. Ivanov, S. K., Kamchatnov, A. M., Congy, T. & Pavloff, N. Solution of the Riemann problem for polarization waves in a two-component Bose–Einstein condensate. Phys. Rev. E 96, 062202 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  24. Chang, J. J., Engels, P. & Hoefer, M. A. Formation of dispersive shock waves by merging and splitting Bose–Einstein condensates. Phys. Rev. Lett. 101, 170404 (2008).

    Article  ADS  Google Scholar 

  25. Mossman, M. E., Hoefer, M. A., Julien, K., Kevrekidis, P. G. & Engels, P. Dissipative shock waves generated by a quantum-mechanical piston. Nat. Commun. 9, 4665 (2018).

    Article  ADS  Google Scholar 

  26. Mossman, M. E., Delikatny, E. S., Forbes, M. M. & Engels, P. Stability in turbulence: the interplay between shocks and vorticity in a superfluid with higher-order dispersion. Phys. Rev. A 102, 053310 (2020).

    Article  ADS  Google Scholar 

  27. Daniel, M., Kruskal, M. D., Lakshmanan, M. & Nakamura, K. Singularity structure analysis of the continuum Heisenberg spin chain with anisotropy and transverse field: nonintegrability and chaos. J. Math. Phys. 33, 771 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  28. Tsubota, M., Aoki, Y. & Fujimoto, K. Spin-glass-like behavior in the spin turbulence of spinor Bose–Einstein condensates. Phys. Rev. A 88, 061601 (2013).

    Article  ADS  Google Scholar 

  29. Farolfi, A., Trypogeorgos, D., Mordini, C., Lamporesi, G. & Ferrari, G. Observation of magnetic solitons in two-component Bose–Einstein condensates. Phys. Rev. Lett. 125, 030401 (2020).

    Article  ADS  Google Scholar 

  30. Farolfi, A. et al. Design and characterization of a compact magnetic shield for ultracold atomic gas experiments. Rev. Sci. Instrum. 90, 115114 (2019).

    Article  ADS  Google Scholar 

  31. Knoop, S. et al. Feshbach spectroscopy and analysis of the interaction potentials of ultracold sodium. Phys. Rev. A 83, 042704 (2011).

    Article  ADS  Google Scholar 

  32. Bienaimé, T. et al. Spin-dipole oscillation and polarizability of a binary Bose–Einstein condensate near the miscible-immiscible phase transition. Phys. Rev. A 94, 063652 (2016).

    Article  ADS  Google Scholar 

  33. Fava, E. et al. Observation of spin superfluidity in a Bose gas mixture. Phys. Rev. Lett. 120, 170401 (2018).

    Article  ADS  Google Scholar 

  34. Farolfi, A. et al. Manipulation of an elongated internal Josephson junction of bosonic atoms. Phys. Rev. A 104, 023326 (2021).

    Article  ADS  Google Scholar 

Download references


We thank F. Dalfovo for his critical reading of the manuscript and M. Oberthaler, G. Consolo, D. Go, E. Mendive-Tapia and N. Pavloff for fruitful discussions. We acknowledge funding from INFN through the FISH project, from the European Union’s Horizon 2020 Programme through the NAQUAS project of QuantERA ERA-NET Cofund in Quantum Technologies (grant agreement no. 731473) and from Provincia Autonoma di Trento. We thank the BEC Center, the Q@TN initiative and QuTiP.

Author information

Authors and Affiliations



A. Recati and G.F. conceived the project. A.F. performed the experiment. A.F. and A.Z. analysed the experimental data. D.T. set up the experiment control. A.G., A. Recati and A. Roy developed the theory and performed the corresponding numerical simulations. A. Recati, A.Z. and G.L. wrote the manuscript. All the authors contributed to the discussion and interpretation of results.

Corresponding authors

Correspondence to A. Zenesini, A. Recati or G. Lamporesi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison between spin hydrodynamic (SH) and LLE simulation.

Total density relative modulation (a), modulus of the total current (b), magnetization (c) and modulus of the spin current (d) simulated according to the SH around the interface before and after its breaking. The magnetization resulting from LLE (e) shows a very good agreement, accordingly to the negligible role of the density modulation in the dynamics. f, Contribution of the spin current term related to the quantum torque. Also in this case, panel f shows that the second term in Eq. (2) dominates over the first one, hence the quantum torque drives the dynamics. The colorscale units of plots b,d,f is atoms/ms.

Source data

Source data

Source Data Fig. 2

Source data: {x,y,z} for Fig. 2c,d and {x,y} for Fig.2a,b,e,g and the insets.

Source Data Fig. 3

Source data: {x,y,z} for Fig. 3a,b and {x,y} for Fig. 3c–h.

Source Data Fig. 4

Source data: {x,y,z} for the insets and {x,y,dy} for Fig. 4a,b.

Source Data Extended Data Fig. 1

Source data: {x,y,z} for Extended Data Fig. 1.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farolfi, A., Zenesini, A., Trypogeorgos, D. et al. Quantum-torque-induced breaking of magnetic interfaces in ultracold gases. Nat. Phys. 17, 1359–1363 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing