Abstract
General-purpose quantum computers can, in principle, entangle a number of noisy physical qubits to realize composite qubits protected against errors. Architectures for measurement-based quantum computing intrinsically support error-protected qubits and are the most viable approach for constructing an all-photonic quantum computer. Here we propose and demonstrate an integrated silicon photonic scheme that both entangles multiple photons, and encodes multiple physical qubits on individual photons, to produce error-protected qubits. We realize reconfigurable graph states to compare several schemes with and without error-correction encodings and implement a range of quantum information processing tasks. We observe a success rate increase from 62.5% to 95.8% when running a phase-estimation algorithm without and with error protection, respectively. Finally, we realize hypergraph states, which are a generalized class of resource states that offer protection against correlated errors. Our results show how quantum error-correction encodings can be implemented with resource-efficient photonic architectures to improve the performance of quantum algorithms.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data that support the plots within this paper and other findings of this study are available at https://doi.org/10.6084/m9.figshare.11903427.
References
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579 (2017).
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Gottesman, D. Stabilizer Codes and Quantum Error Correction. PhD thesis, Californian Institute of Technology (1997).
Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. Preprint at https://arxiv.org/abs/quant-ph/9906129 (1999).
Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001).
Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003).
Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169 (2005).
Vallone, G., Pomarico, E., De Martini, F. & Mataloni, P. Active one-way quantum computation with two-photon four-qubit cluster states. Phys. Rev. Lett. 100, 160502 (2008).
Wang, Y., Li, Y., Yin, Z. & Zeng, B. 16-qubit IBM universal quantum computer can be fully entangled. npj Quantum Inf. 4, 1 (2018).
Zwerger, M., Briegel, H. J. & Dür, W. Hybrid architecture for encoded measurement-based quantum computation. Sci. Rep. 4, 5364 (2014).
Raussendorf, R., Harrington, J. & Goyal, K. Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9, 199 (2007).
Schlingemann, D. & Werner, R. F. Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001).
Lanyon, B. P. et al. Measurement-based quantum computation with trapped ions. Phys. Rev. Lett. 111, 210501 (2013).
Barz, S. et al. Demonstrating elements of measurement-based quantum error correction. Phys. Rev. A 90, 042302 (2014).
Yao, X.-C. et al. Experimental demonstration of topological error correction. Nature 482, 489 (2012).
Bell, B. et al. Experimental demonstration of a graph state quantum error-correction code. Nat. Commun. 5, 1 (2014).
Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).
Gimeno-Segovia, M., Shadbolt, P., Browne, D. E. & Rudolph, T. From three-photon Greenberger–Horne–Zeilinger states to ballistic universal quantum computation. Phys. Rev. Lett. 115, 020502 (2015).
Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2, 030901 (2017).
Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285 (2018).
Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447 (2017).
Adcock, J. C., Vigliar, C., Santagati, R., Silverstone, J. W. & Thompson, M. G. Programmable four-photon graph states on a silicon chip. Nat. Commun. 10, 3528 (2019).
Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 1 (2019).
Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005).
Vallone, G., Pomarico, E., Mataloni, P., De Martini, F. & Berardi, V. Realization and characterization of a two-photon four-qubit linear cluster state. Phys. Rev. Lett. 98, 180502 (2007).
Reimer, C. et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148 (2019).
Zhang, Q. et al. Demonstration of a scheme for the generation of ‘event-ready’ entangled photon pairs from a single-photon source. Phys. Rev. A 77, 062316 (2008).
Ding, Y., Peucheret, C., Ou, H. & Yvind, K. Fully etched apodized grating coupler on the SOI platform with −0.58 db coupling efficiency. Opt. Lett. 39, 5348 (2014).
Malik, M. et al. Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248 (2016).
Adcock, J. C., Morley-Short, S., Silverstone, J. W. & Thompson, M. G. Hard limits on the postselectability of optical graph states. Quantum Sci. Technol. 4, 015010 (2018).
Gu, X., Erhard, M., Zeilinger, A. & Krenn, M. Quantum experiments and graphs II: quantum interference, computation, and state generation. Proc. Natl Acad. Sci. USA 116, 4147 (2019).
Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1 (2009).
Gross, D., Liu, Y.-K., Flammia, S. T., Becker, S. & Eisert, J. Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010).
Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256 (2000).
Wang, X.-L. et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016).
Hein, M., Eisert, J. & Briegel, H. J. Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004).
Nielsen, M. A. & Chuang, I. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2002).
Morley-Short, S., Gimeno-Segovia, M., Rudolph, T. & Cable, H. Loss-tolerant teleportation on large stabilizer states. Quantum Sci. Technol. 4, 025014 (2019).
Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059 (2011).
O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).
Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393 (2007).
Friis, N. et al. Flexible resources for quantum metrology. New J. Phys. 19, 063044 (2017).
Paesani, S. et al. Experimental Bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett. 118, 100503 (2017).
Dobšíček, M., Johansson, G., Shumeiko, V. & Wendin, G. Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: a two-qubit benchmark. Phys. Rev. A 76, 030306 (2007).
Kitaev, A. Y. Quantum measurements and the Abelian stabilizer problem. Preprint at https://arxiv.org/abs/quant-ph/9511026 (1995).
Qu, R., Wang, J., Li, Z.-S. & Bao, Y.-R. Encoding hypergraphs into quantum states. Phys. Rev. A 87, 022311 (2013).
Rossi, M., Huber, M., Bruß, D. & Macchiavello, C. Quantum hypergraph states. New J. Phys. 15, 113022 (2013).
Gühne, O. et al. Entanglement and nonclassical properties of hypergraph states. J. Phys. A 47, 335303 (2014).
Miller, J. & Miyake, A. Hierarchy of universal entanglement in 2D measurement-based quantum computation. npj Quantum Inf. 2, 16036 (2016).
Gachechiladze, M., Budroni, C. & Gühne, O. Extreme violation of local realism in quantum hypergraph states. Phys. Rev. Lett. 116, 070401 (2016).
Gachechiladze, M., Gühne, O. & Miyake, A. Changing the circuit-depth complexity of measurement-based quantum computation with hypergraph states. Phys. Rev. A 99, 052304 (2019).
Lyons, D. W. et al. Local Pauli stabilizers of symmetric hypergraph states. J. Phys. A 50, 245303 (2017).
Gachechiladze, M., Tsimakuridze, N. & Gühne, O. Graphical description of unitary transformations on hypergraph states. J. Phys. A 50, 19LT01 (2017).
Morimae, T., Takeuchi, Y. & Hayashi, M. Verification of hypergraph states. Phys. Rev. A 96, 062321 (2017).
LoPiparo, N., Hanks, M., Gravel, C., Nemoto, K. & Munro, W. J. Resource reduction for distributed quantum information processing using quantum multiplexed photons. Phys. Rev. Lett. 124, 210503 (2020).
Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photon. 13, 770 (2019).
Paesani, S. et al. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun. 11, 1 (2020).
Eltes, F. et al. An integrated cryogenic optical modulator. Preprint at https://arxiv.org/abs/1904.10902 (2019).
Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556, 349 (2018).
Paesani, S. et al. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925 (2019).
Acknowledgements
We thank R. Santagati, A. E. Jones, J. F. Bulmer, R. Shaw, D. D. Roberts, J. F. Tasker, N. Maraviglia, J. W. Silverstone, W. A. Murray, Z. Raissi, C. Gogolin and P. Skrzypczyk for useful discussions and technical assistance. We acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC), European Research Council (ERC) and European Commission (EC) funded grants PICQUE, BBOI, QUCHIP, QuPIC, QITBOX, VILLUM FONDEN, QUANPIC (ref. 00025298), the Center of Excellence, Denmark SPOC (ref DNRF123) and ERA-NET cofund initiatives QuantERA within the European Union’s Horizon 2020 research and innovation programme grant agreement 731473 (project SQUARE). We acknowledge support from the EPSRC Hubs in Quantum Computing and Simulation (EP/T001062/1) and Networked Quantum Information Technologies (EP/N509711/1). Fellowship support from EPSRC is acknowledged by A.L. (EP/N003470/1).
Author information
Authors and Affiliations
Contributions
C.V., S.P., Y.D., J.W., D.B., M.G.T. and A.L. designed the experiment. J.W. and S.P. designed the integrated circuit. Y.D. fabricated the silicon photonics device. C.V. and S.P. performed the experiment and analysed the data, with theoretical support from J.C.A. and S.M.-S. C.V., S.P., J.C.A. and A.L. wrote the manuscript with feedback from all authors. L.K.O., M.G.T., J.G.R. and A.L. managed the project.
Corresponding authors
Ethics declarations
Competing interests
M.G.T. is involved in developing quantum photonic technologies at PsiQuantum Corporation. The remaining authors declare no competing interests.
Additional information
Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections 1–12, Figs. 1–16 and Tables 1–12.
Rights and permissions
About this article
Cite this article
Vigliar, C., Paesani, S., Ding, Y. et al. Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021). https://doi.org/10.1038/s41567-021-01333-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-021-01333-w
This article is cited by
-
Harnessing graph state resources for robust quantum magnetometry under noise
Scientific Reports (2024)
-
High-fidelity four-photon GHZ states on chip
npj Quantum Information (2024)
-
Drug design on quantum computers
Nature Physics (2024)
-
Roadmapping the next generation of silicon photonics
Nature Communications (2024)
-
Activation of telecom emitters in silicon upon ion implantation and ns pulsed laser annealing
Communications Materials (2024)