Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas

Abstract

Ultracold polar molecules possess long-range, anisotropic and tunable dipolar interactions, providing opportunities to probe quantum phenomena that are inaccessible with existing cold gas platforms. However, experimental progress has been hindered by the dominance of two-body loss over elastic interactions, which prevents efficient evaporative cooling. Although recent work has demonstrated controlled interactions by confining molecules to a two-dimensional geometry, a general approach for tuning molecular interactions in a three-dimensional stable system has been lacking. Here we demonstrate tunable elastic dipolar interactions in a bulk gas of ultracold 40K87Rb molecules in three dimensions, facilitated by an electric field-induced shielding resonance that suppresses the reactive loss by a factor of 30. This improvement in the ratio of elastic to inelastic collisions enables direct thermalization. The thermalization rate depends on the angle between the collisional axis and the dipole orientation controlled by an external electric field, a direct manifestation of the anisotropic dipolar interaction. We achieve evaporative cooling mediated by the dipolar interactions in three dimensions. This work demonstrates full control of a long-lived bulk quantum gas system with tunable long-range interactions, paving the way for the study of collective quantum many-body physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effective intermolecular potential and tuning of molecular interactions near the shielding resonance.
Fig. 2: Resonant shielding of the reactive loss in 3D.
Fig. 3: Anisotropic cross-dimensional thermalization of molecules via dipolar elastic collisions.
Fig. 4: Efficient evaporative cooling of reactive polar molecules in 3D.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    Article  ADS  Google Scholar 

  2. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    Article  ADS  Google Scholar 

  3. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article  ADS  Google Scholar 

  4. Quéméner, G. & Julienne, P. S. Ultracold molecules under control! Chem. Rev. 112, 4949–5011 (2012).

    Article  Google Scholar 

  5. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    Article  ADS  Google Scholar 

  6. Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Gorshkov, A. V. et al. Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A 84, 033619 (2011).

    Article  ADS  Google Scholar 

  8. Peter, D., Müller, S., Wessel, S. & Büchler, H. P. Anomalous behavior of spin systems with dipolar interactions. Phys. Rev. Lett. 109, 025303 (2012).

    Article  ADS  Google Scholar 

  9. Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    Article  ADS  Google Scholar 

  10. Yao, N. Y., Zaletel, M. P., Stamper-Kurn, D. M. & Vishwanath, A. A quantum dipolar spin liquid. Nat. Phys. 14, 405–410 (2018).

    Article  Google Scholar 

  11. Cooper, N. R. & Shlyapnikov, G. V. Stable topological superfluid phase of ultracold polar fermionic molecules. Phys. Rev. Lett. 103, 155302 (2009).

    Article  ADS  Google Scholar 

  12. Pikovski, A., Klawunn, M., Shlyapnikov, G. V. & Santos, L. Interlayer superfluidity in bilayer systems of fermionic polar molecules. Phys. Rev. Lett. 105, 215302 (2010).

    Article  ADS  Google Scholar 

  13. Baranov, M. A., Mar’enko, M. S., Rychkov, V. S. & Shlyapnikov, G. V. Superfluid pairing in a polarized dipolar Fermi gas. Phys. Rev. A 66, 013606 (2002).

    Article  ADS  Google Scholar 

  14. Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).

    Article  Google Scholar 

  15. Ronen, S. & Bohn, J. L. Zero sound in dipolar Fermi gases. Phys. Rev. A 81, 033601 (2010).

    Article  ADS  Google Scholar 

  16. Fregoso, B. M. & Fradkin, E. Ferronematic ground state of the dilute dipolar Fermi gas. Phys. Rev. Lett. 103, 205301 (2009).

    Article  ADS  Google Scholar 

  17. Wilson, R. M., Ronen, S. & Bohn, J. L. Critical superfluid velocity in a trapped dipolar gas. Phys. Rev. Lett. 104, 094501 (2010).

    Article  ADS  Google Scholar 

  18. Liu, B., Li, X., Yin, L. & Liu, W. V. Weyl superfluidity in a three-dimensional dipolar Fermi gas. Phys. Rev. Lett. 114, 045302 (2015).

    Article  ADS  Google Scholar 

  19. Babadi, M. & Demler, E. Collective excitations of quasi-two-dimensional trapped dipolar fermions: transition from collisionless to hydrodynamic regime. Phys. Rev. A 86, 063638 (2012).

    Article  ADS  Google Scholar 

  20. Andreev, V. et al. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

    Article  ADS  Google Scholar 

  21. Cairncross, W. B. & Ye, J. Atoms and molecules in the search for time-reversal symmetry violation. Nat. Rev. Phys. 1, 510–521 (2019).

    Article  Google Scholar 

  22. Bilitewski, T. et al. Dynamical generation of spin squeezing in ultracold dipolar molecules. Phys. Rev. Lett. 126, 113401 (2021).

    Article  ADS  Google Scholar 

  23. André, A. et al. A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nat. Phys. 2, 636–642 (2006).

    Article  Google Scholar 

  24. Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    Article  Google Scholar 

  25. Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium–rubidium molecules. Science 327, 853–857 (2010).

    Article  ADS  Google Scholar 

  26. Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010).

    Article  ADS  Google Scholar 

  27. Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).

    Article  ADS  Google Scholar 

  28. Guo, M. et al. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys. Rev. Lett. 116, 205303 (2016).

    Article  ADS  Google Scholar 

  29. Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    Article  ADS  Google Scholar 

  30. Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).

    Article  ADS  Google Scholar 

  31. Christianen, A., Zwierlein, M. W., Groenenboom, G. C. & Karman, T. Photoinduced two-body loss of ultracold molecules. Phys. Rev. Lett. 123, 123402 (2019).

    Article  ADS  Google Scholar 

  32. Gregory, P. D., Blackmore, J. A., Bromley, S. L. & Cornish, S. L. Loss of ultracold 87Rb133Cs molecules via optical excitation of long-lived two-body collision complexes. Phys. Rev. Lett. 124, 163402 (2020).

    Article  ADS  Google Scholar 

  33. Liu, Y. et al. Photo-excitation of long-lived transient intermediates in ultracold reactions. Nat. Phys. 16, 1132–1136 (2020).

    Article  ADS  Google Scholar 

  34. Hu, M.-G. et al. Direct observation of bimolecular reactions of ultracold KRb molecules. Science 366, 1111–1115 (2019).

    Article  ADS  Google Scholar 

  35. De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    Article  ADS  Google Scholar 

  36. Tobias, W. G. et al. Thermalization and sub-Poissonian density fluctuations in a degenerate molecular Fermi gas. Phys. Rev. Lett. 124, 033401 (2020).

    Article  ADS  Google Scholar 

  37. Quéméner, G. & Bohn, J. L. Strong dependence of ultracold chemical rates on electric dipole moments. Phys. Rev. A 81, 022702 (2010).

    Article  ADS  Google Scholar 

  38. Bohn, J. L., Cavagnero, M. & Ticknor, C. Quasi-universal dipolar scattering in cold and ultracold gases. New J. Phys. 11, 055039 (2009).

    Article  ADS  Google Scholar 

  39. Micheli, A. et al. Universal rates for reactive ultracold polar molecules in reduced dimensions. Phys. Rev. Lett. 105, 073202 (2010).

    Article  ADS  Google Scholar 

  40. Quéméner, G. & Bohn, J. L. Dynamics of ultracold molecules in confined geometry and electric field. Phys. Rev. A 83, 012705 (2011).

    Article  ADS  Google Scholar 

  41. de Miranda, M. H. G. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nat. Phys. 7, 502–507 (2011).

    Article  Google Scholar 

  42. Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).

    Article  ADS  Google Scholar 

  43. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    Article  ADS  Google Scholar 

  44. Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324–1327 (2020).

    Article  ADS  Google Scholar 

  45. Wang, G. & Quéméner, G. Tuning ultracold collisions of excited rotational dipolar molecules. New J. Phys. 17, 035015 (2015).

    Article  ADS  Google Scholar 

  46. Avdeenkov, A. V., Kajita, M. & Bohn, J. L. Suppression of inelastic collisions of polar 1Σ state molecules in an electrostatic field. Phys. Rev. A 73, 022707 (2006).

    Article  ADS  Google Scholar 

  47. Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, 779–782 (2021).

    Article  ADS  Google Scholar 

  48. Bohn, J. L. & Jin, D. S. Differential scattering and rethermalization in ultracold dipolar gases. Phys. Rev. A 89, 22702 (2014).

    Article  ADS  Google Scholar 

  49. González-Martínez, M. L., Bohn, J. L. & Quéméner, G. Adimensional theory of shielding in ultracold collisions of dipolar rotors. Phys. Rev. A 96, 032718 (2017).

    Article  ADS  Google Scholar 

  50. Monroe, C. R., Cornell, E. A., Sackett, C. A., Myatt, C. J. & Wieman, C. E. Measurement of Cs–Cs elastic scattering at T = 30 μK. Phys. Rev. Lett. 70, 414–417 (1993).

    Article  ADS  Google Scholar 

  51. DeMarco, B., Bohn, J. L., Burke, J. P., Holland, M. & Jin, D. S. Measurement of p-wave threshold law using evaporatively cooled fermionic atoms. Phys. Rev. Lett. 82, 4208–4211 (1999).

    Article  ADS  Google Scholar 

  52. Aikawa, K. et al. Anisotropic relaxation dynamics in a dipolar Fermi gas driven out of equilibrium. Phys. Rev. Lett. 113, 263201 (2014).

    Article  ADS  Google Scholar 

  53. Tang, Y., Sykes, A., Burdick, N. Q., Bohn, J. L. & Lev, B. L. s-wave scattering lengths of the strongly dipolar bosons 162Dy and 164Dy. Phys. Rev. A 92, 22703 (2015).

    Article  ADS  Google Scholar 

  54. Wang, R. R. W. & Bohn, J. L. Anisotropic thermalization of dilute dipolar gases. Phys. Rev. A 103, 063320 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  55. Wang, R. R. W., Sykes, A. G. & Bohn, J. L. Linear response of a periodically driven thermal dipolar gas. Phys. Rev. A 102, 33336 (2020).

    Article  ADS  Google Scholar 

  56. Sadeghpour, H. R. et al. Collisions near threshold in atomic and molecular physics. J. Phys. B 33, R93–R140 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from ARO-MURI, AFOSR-MURI, DARPA DRINQS, NSF QLCI OMA–2016244, NIST, and NSF grant no. 1806971. L.L. and G.Q. acknowledge funding from FEW2MANY-SHIELD project no. ANR-17-CE30-0015 from Agence Nationale de la Recherche. We thank L. R. Liu for reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.-R.L., W.G.T., K.M., C.M., G.V., L.D.M. and J.Y. contributed to the experimental measurements. L.L. and G.Q. calculated the effective intermolecular potential. R.R.W.W. and J.L.B. calculated the anisotropic thermalization rate. All authors discussed the results, contributed to the data analysis and worked on the manuscript.

Corresponding authors

Correspondence to Jun-Ru Li or Jun Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Fitting experimental data with the model.

The figure shows the fit results for θ = 45°. a, Fitting of the unheated and heated data. b, Fitted KL and Ncoll for 100 synthetic datasets. We extract a correlation of −0.26 between the two fitted parameters, indicating that the fitting can distinguish between two-body loss and thermalization. The black solid lines are the median of all the fitted results from the synthetic datasets for Ncoll and KL, while the gray lines on the axis represent 68% confidence interval of the fitted results. This median and 68% confidence are reported in the main text. c, Extracted loss coefficient KL versus θ. The line and shaded region indicate the mean value of KL and its standard error.

Source data

Supplementary information

Supplementary Information

Supplementary Fig. 1 and Sections 1 and 2.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JR., Tobias, W.G., Matsuda, K. et al. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys. 17, 1144–1148 (2021). https://doi.org/10.1038/s41567-021-01329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01329-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing