Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of interband collective excitations in twisted bilayer graphene

Abstract

The single-particle and many-body properties of twisted bilayer graphene (TBG) can be dramatically different from those of a single graphene layer, particularly when the two layers are rotated relative to each other by a small angle (θ ≈ 1°), owing to the moiré potential induced by the twist. Here we probe the collective excitations of TBG with a spatial resolution of 20 nm, by applying mid-infrared near-field optical microscopy. We find a propagating plasmon mode in charge-neutral TBG for θ = 1.1−1.7°, which is different from the intraband plasmon in single-layer graphene. We interpret it as an interband plasmon associated with the optical transitions between minibands originating from the moiré superlattice. The details of the plasmon dispersion are directly related to the motion of electrons in the moiré superlattice and offer an insight into the physical properties of TBG, such as band nesting between the flat band and remote band, local interlayer coupling, and losses. We find a strongly reduced interlayer coupling in the regions with AA stacking, pointing at screening due to electron–electron interactions. Optical nano-imaging of TBG allows the spatial probing of interaction effects at the nanoscale and potentially elucidates the contribution of collective excitations to many-body ground states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Collective excitations in TBG.
Fig. 2: Controlling the wavelength of interband plasmons.
Fig. 3: Extracting the optical conductivity from the plasmon dispersion.
Fig. 4: Electronic band structure and optical conductivity of TBG for θ = 1.35°.
Fig. 5: Calculated properties of the relevant interband transition as functions of tunnelling amplitude in the AA regions.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Lopes Dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007).

    Article  ADS  Google Scholar 

  2. Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).

    Article  ADS  Google Scholar 

  3. Bistritzer, R. & MacDonald, A. H. Moire bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  ADS  Google Scholar 

  4. Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2010).

    Article  Google Scholar 

  5. Nam, N. N. T. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).

    Article  ADS  Google Scholar 

  6. San-Jose, P., González, J. & Guinea, F. Non-Abelian gauge potentials in graphene bilayers. Phys. Rev. Lett. 108, 216802 (2012).

    Article  ADS  Google Scholar 

  7. Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Continuum model of the twisted graphene bilayer. Phys. Rev. B 86, 155449 (2012).

    Article  ADS  Google Scholar 

  8. Guinea, F. & Walet, N. R. Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers. Proc. Natl Acad. Sci. USA 115, 13174–13179 (2018).

    Article  ADS  Google Scholar 

  9. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  Google Scholar 

  10. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  11. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  ADS  Google Scholar 

  12. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article  ADS  Google Scholar 

  13. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  ADS  Google Scholar 

  14. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  ADS  Google Scholar 

  15. Tomarken, S. L. et al. Electronic compressibility of magic-angle graphene superlattices. Phys. Rev. Lett. 123, 046601 (2019).

    Article  ADS  Google Scholar 

  16. Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019).

    Article  Google Scholar 

  17. Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    Article  ADS  Google Scholar 

  18. Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    Article  ADS  Google Scholar 

  19. Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    Article  ADS  Google Scholar 

  20. Tarnopolsky, G., Kruchkov, A. J. & Vishwanath, A. Origin of magic angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405 (2019).

    Article  ADS  Google Scholar 

  21. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article  ADS  Google Scholar 

  22. Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47–52 (2020).

    Article  ADS  Google Scholar 

  23. Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    Article  ADS  Google Scholar 

  24. Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020).

    Article  ADS  Google Scholar 

  25. Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    Article  Google Scholar 

  26. Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article  Google Scholar 

  27. Basov, D. N., Fogler, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  28. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  ADS  Google Scholar 

  29. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  30. Ni, G. X. et al. Plasmons in graphene moiré superlattices. Nat. Mater. 14, 1217–1222 (2015).

    Article  ADS  Google Scholar 

  31. Hu, F. et al. Real-space imaging of the tailored plasmons in twisted bilayer graphene. Phys. Rev. Lett. 119, 247402 (2017).

    Article  ADS  Google Scholar 

  32. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article  ADS  Google Scholar 

  33. Moon, P. & Koshino, M. Optical absorption in twisted bilayer graphene. Phys. Rev. B 87, 205404 (2013).

    Article  ADS  Google Scholar 

  34. Stauber, T., San-Jose, P. & Brey, L. Optical conductivity, Drude weight and plasmons in twisted graphene bilayers. New J. Phys. 15, 113050 (2013).

    Article  ADS  Google Scholar 

  35. Tabert, C. J. & Nicol, E. J. Optical conductivity of twisted bilayer graphene. Phys. Rev. B 87, 121402 (2013).

    Article  ADS  Google Scholar 

  36. Lewandowski, C. & Levitov, L. Intrinsically undamped plasmon modes in narrow electron bands. Proc. Natl Acad. Sci. USA 116, 20869–20874 (2019).

    Article  ADS  Google Scholar 

  37. Stauber, T. & Kohler, H. Quasi-flat plasmonic bands in twisted bilayer graphene. Nano Lett. 16, 6844–6849 (2016).

    Article  ADS  Google Scholar 

  38. Novelli, P., Torre, I., Koppens, F. H. L., Taddei, F. & Polini, M. Optical and plasmonic properties of twisted bilayer graphene: impact of interlayer tunneling asymmetry and ground-state charge inhomogeneity. Phys. Rev. B 102, 125403 (2020).

    Article  ADS  Google Scholar 

  39. Das Sarma, S. & Li, Q. Intrinsic plasmons in two-dimensional Dirac materials. Phys. Rev. B 87, 235418 (2013).

    Article  ADS  Google Scholar 

  40. Ou, J.-Y. et al. Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2. Nat. Commun. 5, 5139 (2014).

    Article  ADS  Google Scholar 

  41. Dubrovkin, A. M. et al. Visible range plasmonic modes on topological insulator nanostructures. Adv. Opt. Mater. 5, 1600768 (2017).

    Article  Google Scholar 

  42. Fetter, A. L. Edge magnetoplasmons in a two-dimensional electron fluid confined to a half-plane. Phys. Rev. B 33, 3717–3723 (1986).

    Article  ADS  Google Scholar 

  43. Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).

    Article  ADS  Google Scholar 

  44. Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article  ADS  Google Scholar 

  45. Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Phil. Trans. R. Soc. Lond. A 362, 787–805 (2004).

    Article  ADS  Google Scholar 

  46. Jiang, B.-Y. et al. Plasmon reflections by topological electronic boundaries in bilayer graphene. Nano Lett. 17, 7080–7085 (2017).

    Article  ADS  Google Scholar 

  47. Chen, J. et al. Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC. Nano Lett. 13, 6210–6215 (2013).

    Article  ADS  Google Scholar 

  48. Avouris, P., Heinz, T. F. & Low, T. 2D Materials (Cambridge Univ. Press, 2017).

  49. Giuliani, G. F. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2005).

  50. Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).

    Article  ADS  Google Scholar 

  51. Cai, Y., Zhang, L., Zeng, Q., Cheng, L. & Xu, Y. Infrared reflectance spectrum of BN calculated from first principles. Solid State Commun. 141, 262–266 (2007).

    Article  ADS  Google Scholar 

  52. Carr, S., Fang, S., Zhu, Z. & Kaxiras, E. Exact continuum model for low-energy electronic states of twisted bilayer graphene. Phys. Rev. Res. 1, 013001 (2019).

    Article  Google Scholar 

  53. Koshino, M. et al. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018).

    Google Scholar 

  54. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33 (2009).

    Article  Google Scholar 

  55. Sharma, G., Trushin, M., Sushkov, O. P., Vignale, G. & Adam, S. Superconductivity from collective excitations in magic-angle twisted bilayer graphene. Phys. Rev. Res. 2, 022040 (2020).

    Article  Google Scholar 

  56. Calderón, M. J. & Bascones, E. Correlated states in magic angle twisted bilayer graphene under the optical conductivity scrutiny. npj Quantum Mater. 5, 57 (2020).

    Article  ADS  Google Scholar 

  57. Rivera, N. & Kaminer, I. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2, 538–561 (2020).

    Article  Google Scholar 

  58. Fitzgerald, J. M., Narang, P., Craster, R. V., Maier, S. A. & Giannini, V. Quantum plasmonics. Proc. IEEE 104, 2307–2322 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Vialla for providing the illustration in Fig. 1a. We acknowledge A. H. MacDonald, F. Guinea, T. Stauber, F. Mauri, R. K. Kumar and A. Tomadin for useful discussions. F.H.L.K. acknowledges support from the ERC TOPONANOP (grant agreement no. 726001), the government of Spain (PID2019-106875GB-I00; Severo Ochoa CEX2019-000910-S), Fundació Cellex, Fundació Mir-Puig, and Generalitat de Catalunya (CERCA, AGAUR, SGR 1656). Furthermore, the research leading to these results has received funding from the European Union’s Horizon 2020 under grant agreement no. 881603 (Graphene flagship Core3). N.C.H.H., I.T., P.S., D.B.-R., H.H.S., D.K.E. and F.H.L.K. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through the ‘Severo Ochoa’ program for Centres of Excellence in R&D (SEV-2015-0522), from Fundació Privada Cellex and Fundació Privada Mir-Puig, and from Generalitat de Catalunya through the CERCA program. N.C.H.H. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 665884. I.T. acknowledges funding from the Spanish Ministry of Science, Innovation and Universities (MCIU) and State Research Agency (AEI) via the Juan de la Cierva fellowship no. FJC2018-037098-I. D.B.-R. acknowledges funding from the ‘Secretaria d’Universitats i Recerca de la Generalitat de Catalunya i del Fons Social Europeu’. H.H.S. acknowledges funding under the Marie Skłodowska-Curie grant agreement no. 843830. D.K.E. acknowledges support from the Horizon 2020 programme under grant agreement no. 820378, Project 2D·SIPC and the La Caixa Foundation. P.N. and M.P. have been supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 785219, GrapheneCore2. Work at MIT has been primarily supported by the National Science Foundation (award DMR-1809802), the Center for Integrated Quantum Materials under NSF grant DMR-1231319, and the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF9643 to P.J.-H. for device fabrication, transport measurements and data analysis. This work was performed in part at the Harvard University Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF ECCS award no. 1541959. D.R.-L. acknowledges partial support from Fundacio Bancaria ‘la Caixa’ (LCF/BQ/AN15/10380011). S.F. was supported by the STC Center for Integrated Quantum Materials, NSF grant no. DMR-1231319. S.C. and E.K. were supported by ARO MURI Award W911NF-14-0247. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, and the CREST (JPMJCR15F3), JST.

Author information

Authors and Affiliations

Authors

Contributions

F.H.L.K. and P.J.-H. designed the experiment. N.C.H.H. performed the near-field measurements with assistance from D.B.-R. and H.H.S. D.R.-L., Y.C. and P.S. fabricated the devices and performed transport measurements under the supervision of P.J.-H. and D.K.E. N.C.H.H. and I.T. performed the data analysis. I.T. and P.N. developed the theory part with inputs from M.P. and F.H.L.K. S.C. and S.F. provided the band structures based on ab initio k·p perturbation theory under the supervision of E.K. K.W. and T.T. provided the hBN crystals. F.H.L.K., M.P. and P.J.-H. supervised the project. I.T., N.C.H.H., M.P. and F.H.L.K. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Pablo Jarillo-Herrero, Marco Polini or Frank H. L. Koppens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–11.

Source data

Source Data Fig. 2

All non-analytical elements in Fig. 2g.

Source Data Fig. 3

All non-analytical elements in Fig. 3b,c.

Source Data Fig. 4

All non-analytical elements in Fig. 4.

Source Data Fig. 5

All non-analytical elements in Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hesp, N.C.H., Torre, I., Rodan-Legrain, D. et al. Observation of interband collective excitations in twisted bilayer graphene. Nat. Phys. 17, 1162–1168 (2021). https://doi.org/10.1038/s41567-021-01327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01327-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing