Abstract
The kagome Heisenberg antiferromagnet formed by frustrated spins arranged in a lattice of corner-sharing triangles is a prime candidate for hosting a quantum spin liquid (QSL) ground state consisting of entangled spin singlets1. However, the existence of various competing states makes a convincing theoretical prediction of the QSL ground state difficult2, calling for experimental clues from model materials. The kagome lattice materials Zn-barlowite (ZnCu3(OD)6FBr)3,4,5 and herbertsmithite (ZnCu3(OD)6Cl2)6,7,8,9,10 do not exhibit long-range order and are considered the best realizations of the kagome Heisenberg antiferromagnet known so far. Here we use 63Cu nuclear quadrupole resonance combined with the inverse Laplace transform11,12,13 to locally probe the inhomogeneity of delicate quantum ground states affected by disorder14,15,16,17. We present direct evidence for the gradual emergence of spin singlets with spatially varying excitation gaps, but even at temperatures far below the super-exchange energy scale their fraction is limited to ~60% of the total spins. Theoretical models18,19 need to incorporate the role of disorder to account for the observed inhomogeneously gapped behaviour.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The datasets generated during the current study are available from the corresponding author on reasonable request.
References
Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).
Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).
Feng, Z. et al. Gapped spin-1/2 spinon excitations in a new kagome quantum spin liquid compond Cu3Zn(OH)6FBr. Chin. Phys. Lett. 34, 077502 (2017).
Smaha, R. W. et al. Materializing rival ground states in the barlowite family of kagome magnets: quantum spin liquids, spin ordered and valence bond crystal states. npj Quantum Mater. 5, 23 (2020).
Tustain, K. et al. From magnetic order to quantum disorder: a μSR study of the Zn-barlowite series of S = 1/2 kagomé antiferromagnets, ZnxCu4 − x(OH)6FBr. Nature Commun. 5, 74 (2020).
Shores, M. P., Nytko, E. A., Bartlett, B. M. & Nocera, D. G. A structurally perfect S = 1/2 kagomé antiferromagnet. J. Am. Chem. Soc. 127, 13462–13463 (2005).
Helton, J. S. et al. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 98, 107204 (2007).
Han, T.-H. et al. Fractionalized excitations in the spin–liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).
Fu, M., Imai, T., Han, T.-H. & Lee, Y. S. Evidence for a gapped spin–liquid ground state in a kagome Heisenberg anitiferromagnet. Science 350, 655 (2015).
Khunita, P. et al. Gapless ground state in the archetypal quantum kagome antiferromagnet ZnCu3(OH)6Cl2. Nat. Phys. 16, 469–474 (2020).
Song, Y. Q. et al. T1–T2 correlation spectra obtained using a fast two-dimensional Laplace inversion. J. Magn. Res. 154, 261–268 (2002).
Singer, P. M., Arsenault, A., Imai, T. & Fujita, M. 139La NMR investigation of the interplay between lattice, charge, and spin dynamics in the charge-ordered high-Tc cuprate La1.875Ba0.125CuO4. Phys. Rev. B 101, 174508 (2020).
Papawassiliou, W., Jaworski, A., Pell, J. & Jang, J. H. Resolving Dirac electrons with broadband high-resolution NMR. Nat. Commun. 11, 1285 (2020).
Singh, R. R. P. Valence bond glass phase in dilute kagome antiferromagnets. Phys. Rev. Lett. 104, 177203 (2010).
Shimokawa, T., Watanabe, K. & Kawamura, H. Static and dynamical spin correlations of the \(S=\frac{1}{2}\) random-bond antiferromagnetic Heisenberg model on the triangular and kagome lattices. Phys. Rev. B 92, 134407 (2015).
Kimchi, I., Sheckelton, J. P., McQueen, T. M. & Lee, P. Scaling and data collapse from local moments in frustrated disordered quantum spin systems. Nat. Commun. 9, 4367 (2018).
Kawamura, H. & Uematsu, K. Nature of the randomness-induced quantum spin liquids in two dimensions. J. Phys. Cond. Matter 31, 504003 (2019).
Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).
Liao, H. J. et al. Gapless spin–liquid ground state in the S = 1/2 kagome antiferromagnet. Phys. Rev. Lett. 118, 137202 (2017).
Hiroi, Z. et al. Spin-1/2 kagomé-like lattice in volborthite Cu3V2O7 ⋅ 2H2O. J. Phys. Soc. Jpn 70, 3377 (2001).
Matan, K. et al. Pinwheel valence-bond solid and triplet excitations in the two-dimensional deformed kagome lattice. Nat. Phys. 6, 865–869 (2010).
Ranjith, K. M. et al. Magnetic resonance as a local probe for kagomé magnetism in Barlowite Cu4(OH)6FBr. Sci. Rep. 8, 10851 (2018).
Klanjsek, M. et al. A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 13, 1130–1134 (2017).
Smaha, R. W. et al. Site-specific structure at multiple length scales in kagome quantum spin liquid candidates. Phys. Rev. Mater. 4, 124406 (2020).
Freedman, D. E. et al. Site specific X-ray anomalous dispersion of the geometrically frustrated kagomé magnet, herbertsmithite, ZnCu3(OH)6Cl2. J. Am. Chem. Soc. 132, 16185–16190 (2010).
Imai, T., Fu, M., Han, T. H. & Lee, Y. S. Local spin susceptibility of the \(S=\frac{1}{2}\) kagome lattice in ZnCu3(OD)6Cl2. Phys. Rev. B 84, 020411 (2011).
Helton, J. S. et al. Dynamic scaling in the susceptibility of the spin-\(\frac{1}{2}\) kagome lattice antiferromagnet herbertsmithite. Phys. Rev. Lett. 104, 147201 (2010).
Bhatt, R. N. & Lee, P. A. Scaling studies of highly disordered spin-\(\frac{1}{2}\) antiferromagnetic systems. Phys. Rev. Lett. 48, 344–347 (1982).
Moriya, T. Nuclear magnetic relaxation in antiferromagnetics II. Prog. Theor. Phys. 16, 641–657 (1956).
Itoh, Y. et al. Nuclear quadrupole resonance of Cu in the paramagnetic state of CuO. J. Phys. Soc. Jpn 59, 1143–1146 (1990).
Azuma, M., Hiroi, Z., Takano, M., Ishida, K. & Kitaoka, Y. Observation of a spin gap in SrCu2O3 comprising spin-1/2 quasi-1D two-leg ladders. Phys. Rev. Lett. 73, 3463–3466 (1994).
Kikuchi, J., Yasuoka, H., Hase, M., Sasago, Y. & Uchinokura, K. Cu nuclear quadrupole resonance study of CuGeO3. J. Phys. Soc. Jpn 63, 872–875 (1994).
Kageyama, H. et al. Exact dimer ground state and quantized magnetization plateaus in the two-dimensional spin system SrCu2(BO3)2. Phys. Rev. Lett. 82, 3168–3171 (1999).
Imai, T., Nytko, E. A., Bartlett, B. M., Shores, M. P. & Nocera, D. G. 63Cu, 35Cl and 1H NMR in the \(S=\frac{1}{2}\) kagome lattice ZnCu3(OH)6Cl2. Phys. Rev. Lett. 100, 077203 (2008).
Zorko, A. et al. Symmetry reduction in the quantum kagome antiferromagnet herbertsmithite. Phys. Rev. Lett. 118, 017202 (2017).
Ran, Y., Hermele, M., Lee, P. A. & Wen, X.-G. Projected-wave-function study of the spin-1/2 Heisenberg model on the kagomé lattice. Phys. Rev. Lett. 98, 117205 (2007).
Acknowledgements
T.I. thanks T. Sakai, K. Uematsu, R. R. P. Singh, I. Kimchi, P. A. Lee and S. Sachdev for helpful communications, and P. Dube and R. Giannetta for technical assistance. The work at McMaster was supported by NSERC (T.I.). P.M.S. was supported by the Rice University Consortium for Processes in Porous Media. The work at Stanford and SLAC (sample synthesis and characterization) was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-76SF00515 (Y.S.L. and J. Wen). R.W.S. was supported by the US Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program as well as an NSF Graduate Research Fellowship (DGE-1656518).
Author information
Authors and Affiliations
Contributions
T.I. and Y.S.L. conceived the project. R.W.S., W.H., J. Wen and Y.S.L. synthesized and characterized the samples. J. Wang, W.Y., P.M.S. and T.I. carried out the NMR measurements and data analysis. All authors contributed to the writing and editing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Physics thanks Martin Klanjsek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary information
Supplementary Discussion and Figs. 1–9.
Rights and permissions
About this article
Cite this article
Wang, J., Yuan, W., Singer, P.M. et al. Emergence of spin singlets with inhomogeneous gaps in the kagome lattice Heisenberg antiferromagnets Zn-barlowite and herbertsmithite. Nat. Phys. 17, 1109–1113 (2021). https://doi.org/10.1038/s41567-021-01310-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-021-01310-3
This article is cited by
-
One-ninth magnetization plateau stabilized by spin entanglement in a kagome antiferromagnet
Nature Physics (2024)
-
\(\mu \)SR studies on copper minerals
Interactions (2024)
-
Resistivity and thermal conductivity of an organic insulator β′–EtMe3Sb[Pd(dmit)2]2
Scientific Reports (2022)
-
Emergence of the spin polarized domains in the kagome lattice Heisenberg antiferromagnet Zn-barlowite (Zn0.95Cu0.05)Cu3(OD)6FBr
npj Quantum Materials (2022)
-
Singlets singled out
Nature Physics (2021)