Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topological frequency combs and nested temporal solitons

Abstract

Recent advances in realizing optical frequency combs using nonlinear parametric processes in integrated photonic resonators have revolutionized on-chip optical clocks, spectroscopy and multichannel optical communications. At the same time, the introduction of topological physics in photonic systems has allowed the design of photonic devices with novel functionalities and inherent robustness against fabrication disorders. Here we use topological design principles to theoretically propose the generation of optical frequency combs and temporal dissipative Kerr solitons in a two-dimensional array of coupled ring resonators that creates a synthetic magnetic field for photons and exhibits topological edge states. We show that these topological edge states constitute a travelling-wave super-ring resonator that leads to the generation of coherent nested optical frequency combs, as well as the self-formation of nested temporal solitons and Turing rolls that are remarkably phase-locked over more than 40 rings. Moreover, we show that the topological nested solitons are robust against defects in the lattice, and a single nested soliton achieves a mode efficiency of over 50%, an order of magnitude higher than single-ring frequency combs. Our topological frequency comb works in a parameter regime that can be readily accessed using existing low-loss integrated photonic platforms like silicon nitride.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Working of the topological frequency comb.
Fig. 2: Operation of topological comb in the regimes of Turing rolls and chaos.
Fig. 3: Operation of topological comb in the regime of a nested solitons.
Fig. 4: Robustness of the topological comb.
Fig. 5: Qualitative phase diagram of the topological frequency comb.

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  2. Cundiff, S. T. & Ye, J. Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    Article  ADS  Google Scholar 

  3. Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article  Google Scholar 

  4. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  5. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  6. Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    Article  ADS  Google Scholar 

  8. Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  9. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2013).

    Article  ADS  Google Scholar 

  10. Jang, J. K. et al. Synchronization of coupled optical microresonators. Nat. Photon. 12, 688–693 (2018).

    Article  ADS  Google Scholar 

  11. Tikan, A. et al. Emergent nonlinear phenomena in a driven dissipative photonic dimer. Nat. Phys. 17, 1–7 (2021).

    Article  Google Scholar 

  12. Helgason, Ó. B. et al. Dissipative solitons in photonic molecules. Nat. Photon. 15, 305–310 (2021).

    Article  ADS  Google Scholar 

  13. Vasco, J. & Savona, V. Slow-light frequency combs and dissipative Kerr solitons in coupled-cavity waveguides. Phys. Rev. Appl. 12, 064065 (2019).

    Article  ADS  Google Scholar 

  14. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Google Scholar 

  15. Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photon. 11, 763–773 (2017).

    Article  ADS  Google Scholar 

  16. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  17. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Article  Google Scholar 

  18. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    Article  Google Scholar 

  19. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  20. Mittal, S. et al. Topologically robust transport of photons in a synthetic gauge field. Phys. Rev. Lett. 113, 087403 (2014).

    Article  ADS  Google Scholar 

  21. St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).

    Article  ADS  Google Scholar 

  22. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    Article  ADS  Google Scholar 

  23. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Article  Google Scholar 

  24. Yang, Z. et al. Mode-locked topological insulator laser utilizing synthetic dimensions. Phys. Rev. X 10, 011059 (2020).

    Google Scholar 

  25. Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016).

    Article  ADS  Google Scholar 

  26. Zhao, H. et al. Non-Hermitian topological light steering. Science 365, 1163–1166 (2019).

    Article  ADS  Google Scholar 

  27. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Shalaev, M. I., Walasik, W., Tsukernik, A., Xu, Y. & Litchinitser, N. M. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019).

    Article  ADS  Google Scholar 

  29. Gao, X. et al. Dirac-vortex topological cavities. Nat. Nanotechnol. 15, 1012–1018 (2020).

    Article  ADS  Google Scholar 

  30. Lu, L., Gao, H. & Wang, Z. Topological one-way fiber of second Chern number. Nat. Commun. 9, 5384 (2018).

    Article  ADS  Google Scholar 

  31. Mittal, S., Goldschmidt, E. A. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).

    Article  Google Scholar 

  32. Mittal, S., Orre, V. V., Goldschmidt, E. A. & Hafezi, M. Tunable quantum interference using a topological source of indistinguishable photon pairs. Nat. Photon. 15, 542–548 (2021).

    Article  ADS  Google Scholar 

  33. Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J. & Segev, M. Topological protection of biphoton states. Science 362, 568–571 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Kruk, S. et al. Nonlinear light generation in topological nanostructures. Nat. Nanotechnol. 14, 126–130 (2019).

    Article  ADS  Google Scholar 

  35. Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    Article  ADS  Google Scholar 

  36. Lumer, Y., Plotnik, Y., Rechtsman, M. C. & Segev, M. Self-localized states in photonic topological insulators. Phys. Rev. Lett. 111, 243905 (2013).

    Article  ADS  Google Scholar 

  37. Ablowitz, M. J., Curtis, C. W. & Ma, Y.-P. Linear and nonlinear traveling edge waves in optical honeycomb lattices. Phys. Rev. A 90, 023813 (2014).

    Article  ADS  Google Scholar 

  38. Leykam, D. & Chong, Y. D. Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett. 117, 143901 (2016).

    Article  ADS  Google Scholar 

  39. Mukherjee, S. & Rechtsman, M. C. Observation of Floquet solitons in a topological bandgap. Science 368, 856–859 (2020).

    Article  ADS  Google Scholar 

  40. Xue, X., Wang, P.-H., Xuan, Y., Qi, M. & Weiner, A. M. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photon. Rev. 11, 1600276 (2017).

    Article  ADS  Google Scholar 

  41. Bao, H. et al. Laser cavity-soliton microcombs. Nat. Photon. 13, 384–389 (2019).

    Article  ADS  Google Scholar 

  42. Xue, X., Zheng, X. & Zhou, B. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photon. 13, 616–622 (2019).

    Article  ADS  Google Scholar 

  43. Leykam, D., Mittal, S., Hafezi, M. & Chong, Y. D. Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices. Phys. Rev. Lett. 121, 023901 (2018).

    Article  ADS  Google Scholar 

  44. Mittal, S., Orre, V. V., Leykam, D., Chong, Y. D. & Hafezi, M. Photonic anomalous quantum Hall effect. Phys. Rev. Lett. 123, 043201 (2019).

    Article  ADS  Google Scholar 

  45. Chembo, Y. K. & Yu, N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A 82, 033801 (2010).

    Article  ADS  Google Scholar 

  46. Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).

    Article  ADS  Google Scholar 

  47. Hansson, T., Modotto, D. & Wabnitz, S. On the numerical simulation of Kerr frequency combs using coupled mode equations. Opt. Commun. 312, 134–136 (2014).

    Article  ADS  Google Scholar 

  48. Godey, C., Balakireva, I. V., Coillet, A. & Chembo, Y. K. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89, 063814 (2014).

    Article  ADS  Google Scholar 

  49. Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    Article  Google Scholar 

  50. Reimer, C. et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–153 (2019).

    Article  Google Scholar 

  51. Carusotto, I. et al. Photonic materials in circuit quantum electrodynamics. Nat. Phys. 16, 268–279 (2020).

    Article  Google Scholar 

  52. Kollár, A. J., Fitzpatrick, M. & Houck, A. A. Hyperbolic lattices in circuit quantum electrodynamics. Nature 571, 45–50 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Air Force Office of Scientific Research Multi-University Research Initiative (AFOSR-MURI grant no. FA9550-16-1-0323), Office of Naval Research Multi-University Research Initiative (ONR-MURI grant no. N00014-20-1-2325), United States Army Research Laboratory grant no. W911NF1920181 and NSF grant no. PHY1820938. Y.K.C. was supported by the Air Force Office of Scientific Research (AFOSR grant no. FA9550-20-1-0357).

Author information

Authors and Affiliations

Authors

Contributions

S.M. and M.H. conceived the idea. S.M. performed the numerical simulations, analysed the data and wrote the manuscript with inputs from M.H., Y.K.C., G.M. and K.S. M.H. supervised the project.

Corresponding author

Correspondence to Sunil Mittal.

Ethics declarations

Competing interests

S.M. and M.H. have filed a provisional patent based on the results reported in this manuscript.

Additional information

Peer review informationNature Physics thanks Vittorio Peano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Sections 1–8.

Supplementary Video 1

Circulation of a single nested soliton around the lattice.

Supplementary Video 2

Circulation of two nested solitons around the lattice.

Supplementary Video 3

Robustness of nested solitons against defects in the lattice.

Source data

Source Data Fig. 2

Raw data for line plots in Fig. 2a,c,g,h.

Source Data Fig. 3

Raw data for line plots in Fig. 3b,i,j.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mittal, S., Moille, G., Srinivasan, K. et al. Topological frequency combs and nested temporal solitons. Nat. Phys. 17, 1169–1176 (2021). https://doi.org/10.1038/s41567-021-01302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01302-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing