Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent spin-wave transport in an antiferromagnet


Magnonics is a research field complementary to spintronics, in which the quanta of spin waves (magnons) replace electrons as information carriers, promising lower dissipation1,2,3. The development of ultrafast, nanoscale magnonic logic circuits calls for new tools and materials to generate coherent spin waves with frequencies as high and wavelengths as short as possible4,5. Antiferromagnets can host spin waves at terahertz frequencies and are therefore seen as a future platform for the fastest and least dissipative transfer of information6,7,8,9,10,11. However, the generation of short-wavelength coherent propagating magnons in antiferromagnets has so far remained elusive. Here we report the efficient emission and detection of a nanometre-scale wavepacket of coherent propagating magnons in the antiferromagnetic oxide dysprosium orthoferrite using ultrashort pulses of light. The subwavelength confinement of the laser field due to large absorption creates a strongly non-uniform spin excitation profile, enabling the propagation of a broadband continuum of coherent terahertz spin waves. The wavepacket contains magnons with a shortest detected wavelength of 125 nm that propagate into the material with supersonic velocities of more than 13 km s–1. This source of coherent short-wavelength spin carriers opens up new prospects for terahertz antiferromagnetic magnonics and coherence-mediated logic devices at terahertz frequencies.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: All-optical generation and detection of coherent AFM spin waves.
Fig. 2: Temperature evolution of the spin-wave frequencies.
Fig. 3: Confinement of light as a necessary condition for the generation of finite-k spin waves.
Fig. 4: Revealing spectral components of the broadband AFM magnon wavepacket.

Data availability

Source data for figures are publicly available at All other data that support the findings of this paper are available from the corresponding authors upon request.

Code availability

The code used to simulate the magnon dynamics is available upon reasonable request.


  1. 1.

    Kruglyak, V. V. & Hicken, R. J. Magnonics: experiment to prove the concept. J. Magn. Magn. Mater. 306, 191–194 (2006).

    Article  ADS  Google Scholar 

  2. 2.

    Kruglyak, V. V., Demokritov, S. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  ADS  Google Scholar 

  3. 3.

    Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    Article  ADS  Google Scholar 

  4. 4.

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  5. 5.

    Sander, D. et al. The 2017 magnetism roadmap. J. Phys. D 50, 363001 (2017).

    Article  Google Scholar 

  6. 6.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  ADS  Google Scholar 

  7. 7.

    Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics. Nat. Phys. 14, 229–241 (2018).

    Article  Google Scholar 

  8. 8.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    MathSciNet  Article  ADS  Google Scholar 

  9. 9.

    Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    Article  ADS  Google Scholar 

  10. 10.

    Li, J. et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70–74 (2020).

    Article  ADS  Google Scholar 

  11. 11.

    Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160–165 (2020).

    Article  ADS  Google Scholar 

  12. 12.

    Galkina, E. & Ivanov, B. Dynamic solitons in antiferromagnets. Low. Temp. Phys. 44, 618–633 (2018).

    Article  ADS  Google Scholar 

  13. 13.

    Giamarchi, T., Rüegg, C. & Tchernyshyov, O. Bose–Einstein condensation in magnetic insulators. Nat. Phys. 4, 198–204 (2008).

    Article  Google Scholar 

  14. 14.

    Johansen, Ø., Kamra, A., Ulloa, C., Brataas, A. & Duine, R. A. Magnon-mediated indirect exciton condensation through antiferromagnetic insulators. Phys. Rev. Lett. 123, 167203 (2019).

    Article  ADS  Google Scholar 

  15. 15.

    Bunkov, Y. M. et al. High-Tc spin superfluidity in antiferromagnets. Phys. Rev. Lett. 108, 177002 (2012).

    Article  ADS  Google Scholar 

  16. 16.

    Takei, S., Halperin, B. I., Yacoby, A. & Tserkovnyak, Y. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B 90, 094408 (2014).

    Article  ADS  Google Scholar 

  17. 17.

    Qaiumzadeh, A., Skarsvåg, H., Holmqvist, C. & Brataas, A. Spin superfluidity in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 118, 137201 (2017).

    Article  ADS  Google Scholar 

  18. 18.

    Dąbrowski, M. et al. Coherent transfer of spin angular momentum by evanescent spin waves within antiferromagnetic NiO. Phys. Rev. Lett. 124, 217201 (2020).

    Article  ADS  Google Scholar 

  19. 19.

    Kimel, A. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article  ADS  Google Scholar 

  20. 20.

    Duong, N., Satoh, T. & Fiebig, M. Ultrafast manipulation of antiferromagnetism of NiO. Phys. Rev. Lett. 93, 117402 (2004).

    Article  ADS  Google Scholar 

  21. 21.

    Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

    Article  ADS  Google Scholar 

  22. 22.

    Bossini, D. et al. Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons. Nat. Commun. 7, 10645 (2016).

    Article  ADS  Google Scholar 

  23. 23.

    Afanasiev, D. et al. Ultrafast control of magnetic interactions via light-driven phonons. Nat. Mater. 20, 607–611 (2021).

    Article  ADS  Google Scholar 

  24. 24.

    Afanasiev, D. et al. Control of the ultrafast photoinduced magnetization across the Morin transition in DyFeO3. Phys. Rev. Lett. 116, 097401 (2016).

    Article  ADS  Google Scholar 

  25. 25.

    Usachev, P. et al. Optical properties of thulium orthoferrite TmFeO3. Phys. Solid State 47, 2292–2298 (2005).

    Article  ADS  Google Scholar 

  26. 26.

    Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).

    Article  ADS  Google Scholar 

  27. 27.

    Hortensius, J. R., Afanasiev, D., Sasani, A., Bousquet, E. & Caviglia, A. D. Ultrafast strain engineering and coherent structural dynamics from resonantly driven optical phonons in LaAlO3. npj Quantum Mater. 5, 95 (2020).

    Article  ADS  Google Scholar 

  28. 28.

    Afanasiev, D., Zvezdin, A. & Kimel, A. Laser-induced shift of the Morin point in antiferromagnetic DyFeO3. Opt. Express 23, 23978–23984 (2015).

    Article  ADS  Google Scholar 

  29. 29.

    Balbashov, A., Volkov, A., Lebedev, S., Mukhin, A. & Prokhorov, A. High-frequency magnetic properties of dysprosium orthoferrite. Zh. Eksp. Teor. Fiz. [Sov. Phys. JETP] 88, 974–987 (1985).

    Google Scholar 

  30. 30.

    Bar’yakhtar, V. G., Ivanov, B. & Chetkin, M. V. Dynamics of domain walls in weak ferromagnets. Sov. Phys. Usp. 28, 563–588 (1985).

    Article  ADS  Google Scholar 

  31. 31.

    Zvezdin, A. K. & Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials (CRC Press, 1997).

  32. 32.

    Demokritov, S. O., Hillebrands, B. & Slavin, A. N. Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Phys. Rep. 348, 441–489 (2001).

    Article  ADS  Google Scholar 

  33. 33.

    Qiu, H. et al. Ultrafast spin current generated from an antiferromagnet. Nat. Phys. 17, 388–394 (2021).

    Article  Google Scholar 

  34. 34.

    Razdolski, I. et al. Nanoscale interface confinement of ultrafast spin transfer torque driving non-uniform spin dynamics. Nat. Commun. 8, 15007 (2017).

    Article  ADS  Google Scholar 

  35. 35.

    Melnikov, A. et al. Ultrafast transport of laser-excited spin-polarized carriers in Au/Fe/MgO (001). Phys. Rev. Lett. 107, 076601 (2011).

    Article  ADS  Google Scholar 

  36. 36.

    Siddiqui, S. A. et al. Metallic antiferromagnets. J. Appl. Phys. 128, 040904 (2020).

    Article  ADS  Google Scholar 

  37. 37.

    Lebrun, R. et al. Long-distance spin-transport across the Morin phase transition up to room temperature in the ultra-low damping single crystals of the antiferromagnet α-Fe2O3. Nat. Commun. 11, 6332 (2020).

    Article  ADS  Google Scholar 

  38. 38.

    Hashimoto, Y. et al. All-optical observation and reconstruction of spin wave dispersion. Nat. Commun. 8, 15859 (2017).

    Article  ADS  Google Scholar 

  39. 39.

    Satoh, T. et al. Directional control of spin-wave emission by spatially shaped light. Nat. Photon. 6, 662–666 (2012).

    Article  ADS  Google Scholar 

  40. 40.

    Au, Y. et al. Direct excitation of propagating spin waves by focused ultrashort optical pulses. Phys. Rev. Lett. 110, 097201 (2013).

    Article  ADS  Google Scholar 

  41. 41.

    Bonetti, S. et al. Direct observation and imaging of a spin-wave soliton with p-like symmetry. Nat. Commun. 6, 8889 (2015).

    Article  ADS  Google Scholar 

  42. 42.

    Ozhogin, V. & Preobrazhenskiĭ, V. Anharmonicity of mixed modes and giant acoustic nonlinearity of antiferromagnetics. Sov. Phys. Usp. 31, 713–729 (1988).

    Article  ADS  Google Scholar 

Download references


We thank V. V. Kruglyak and R. Rejali for critically reading the manuscript and T. C. van Thiel and E. Demler for useful discussions. This work was supported by the EU through the European Research Council grant no. 677458 (AlterMateria), the Netherlands Organization for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience programme (NanoFront), and the Veni, Vidi, Vici programme. R.V.M. and R.L. acknowledge support from the European Research Council grant no. 852050 (MAGSHAKE). R.C. acknowledges support by the project Quantox grant no. 731473, QuantERA-NET Cofund in Quantum Technologies, implemented within the EU-H2020 programme. B.A.I. acknowledges support from the National Scientific Foundation of Ukraine under grant no. 2020.02/0261.

Author information




D.A. and A.D.C. conceived the project. J.R.H., D.A. and M.M. performed the experiments and analysed the data. B.A.I. developed the general theoretical framework describing the spin-wave propagation. R.L. and R.V.M. developed the theoretical formalism of the spin-wave detection. B.A.I., R.C., R.V.M. and A.V.K. contributed to discussion and theoretical interpretation of the results. A.D.C. supervised the project. The manuscript was written by J.R.H., D.A. and A.D.C., with feedback and input from all the co-authors.

Corresponding authors

Correspondence to J. R. Hortensius, D. Afanasiev or A. D. Caviglia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Xin Fan, Markus Münzenberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experimental setup.

RR: gold retroreflector mounted on a motorized mechanical precision delay stage, OPA: optical parametric amplifier, BBO: β-barium borate crystal, WP: Wollaston Prism, D1, D2: a pair of balanced silicon photodetectors.

Extended Data Fig. 2 Time-resolved spin-wave detection at different temperatures.

a,b, Time resolved polarization rotation in the transmission (a) and reflection geometry (b) following excitation at  = 3.1 eV for different temperatures. The probe incidence angle is near-normal, with λ0 = 700 nm.

Extended Data Fig. 3 Real part of the refractive index as a function of the pump photon energy.

Real part n of the refractive index, as extracted using spectroscopic ellipsometry measurements.

Extended Data Fig. 4 Simulations of the light-induced spin wave dynamics.

Real-space distribution of the magnon spin deflection at different times t, after optical excitation at  = 3.1 eV with a penetration depth of 50 nm, as determined by equation (3).

Extended Data Fig. 5 Extracting the magnon propagation distance.

Time-resolved polarization rotation originating from a propagating magnon, as obtained in the reflection geometry. The solid line represents a best fit of a damped sine, giving a lifetime of about 85 ps. With the largest estimated group velocities vg of the measured magnons of about 13 km/s, this gives a propagation distance lc = vgτ = 1.1 μm.

Supplementary information

Supplementary Information

Supplementary Sections 1–5 and Figs. 1–8.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hortensius, J.R., Afanasiev, D., Matthiesen, M. et al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 17, 1001–1006 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing