Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Detecting photoelectrons from spontaneously formed excitons

Abstract

Excitons, quasiparticles of electrons and holes bound by Coulombic attraction, are created transiently by light and play an important role in optoelectronics, photovoltaics and photosynthesis. They are also predicted to form spontaneously in a small-gap semiconductor or a semimetal, leading to a Bose–Einstein condensate at low temperature, but there has not been any direct evidence of this effect so far. Here we detect the photoemission signal from spontaneously formed excitons in a debated excitonic insulator candidate, Ta2NiSe5. Our symmetry-selective angle-resolved photoemission spectroscopy reveals a characteristic excitonic feature above the transition temperature, which provides detailed properties of excitons, such as the anisotropic Bohr radius. The present result provides evidence for so-called preformed excitons and guarantees the excitonic insulator nature of Ta2NiSe5 at low temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The symmetry-selective ARPES experimental set-up and the band structure of TNS.
Fig. 2: Results of the symmetry-selective ARPES.
Fig. 3: Polarization-dependent ARPES results at T = 380 K (above Tc).
Fig. 4: Analysis of excitonic photoemission at T = 380 K.
Fig. 5: Analysis of excitonic photoemission along the \({\bar{{\Gamma}}}\)\(\bar {\rm{Y}}\) direction and overview of preformed excitons in real and momentum space.

Similar content being viewed by others

Data availability

Data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The numerical computation codes used to obtain the ARPES simulations in Fig. 4c,d are available from the corresponding author upon reasonable request.

References

  1. Lee, H., Cheng, Y.-C. & Fleming, G. R. Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316, 1462–1465 (2007).

    Article  ADS  Google Scholar 

  2. Mueller, M. & Malic, T. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2, 29 (2018).

    Article  Google Scholar 

  3. Kufer, D. & Konstantatos, G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 15, 7307–7313 (2015).

    Article  ADS  Google Scholar 

  4. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals hetero-interfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    Article  ADS  Google Scholar 

  5. Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

    Article  ADS  Google Scholar 

  6. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9, 268–272 (2014).

    Article  ADS  Google Scholar 

  7. Ye, Y. et al. Monolayer excitonic laser. Nat. Photon. 9, 733–737 (2015).

    Article  ADS  Google Scholar 

  8. Butov, L. V. et al. Condensation of indirect excitons in coupled AlAs/GaAs quantum wells. Phys. Rev. Lett. 73, 304–307 (1994).

    Article  ADS  Google Scholar 

  9. Liu, X. et al. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    Article  Google Scholar 

  10. Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    Article  ADS  Google Scholar 

  11. Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).

    Article  ADS  Google Scholar 

  12. Sugawara, K. et al. Unconventional charge-density-wave transition in monolayer 1T-TiSe2. ACS Nano 10, 1341–1345 (2016).

    Article  Google Scholar 

  13. Wakisaka, Y. et al. Excitonic insulator state in Ta2NiSe5 probed by photoemission spectroscopy. Phys. Rev. Lett. 103, 026402 (2009).

    Article  ADS  Google Scholar 

  14. Wakisaka, Y. et al. Photoemission spectroscopy of Ta2NiSe5. J. Supercond. Nov. Magn. 25, 1231–1234 (2012).

    Article  Google Scholar 

  15. Seki, K. et al. Excitonic Bose–Einstein condensation in Ta2NiSe5 above room temperature. Phys. Rev. B 90, 155116 (2014).

    Article  ADS  Google Scholar 

  16. Lee, J. et al. Strong interband interaction in the excitonic insulator phase of Ta2NiSe5. Phys. Rev. B 99, 075408 (2019).

    Article  ADS  Google Scholar 

  17. Lu, Y. F. et al. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 8, 14408 (2017).

    Article  ADS  Google Scholar 

  18. Fukutani, K. et al. Electrical tuning of the excitonic insulator ground state of Ta2NiSe5. Phys. Rev. Lett. 123, 206401 (2019).

    Article  ADS  Google Scholar 

  19. Okazaki, K. et al. Photo-induced semimetallic states realized in electron–hole coupled insulators. Nat. Commun. 9, 4322 (2018).

    Article  ADS  Google Scholar 

  20. Kim, M. J. et al. Observation of the soft mode behaviors across the structural phase transition in the excitonic insulator Ta2NiSe5. Phys. Rev. Res. 2, 042039 (2020).

    Article  Google Scholar 

  21. Andrich, P. et al. Ultrafast melting and recovery of collective order in the excitonic insulator Ta2NiSe5. Nat. Commun. 12, 1699 (2021).

    Article  ADS  Google Scholar 

  22. Kim, K. et al. Direct observation of excitonic instability in Ta2NiSe5. Nat. Commun. 12, 1969 (2021).

    Article  ADS  Google Scholar 

  23. Jerome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).

    Article  ADS  Google Scholar 

  24. Larkin, T. I. et al. Giant exciton Fano resonance in quasi-one-dimensional Ta2NiSe5. Phys. Rev. B 95, 195144 (2017).

    Article  ADS  Google Scholar 

  25. Zenker, B., Fehske, H. & Beck, H. The fate of the excitonic insulator in the presence of phonons. Phys. Rev. B 90, 195118 (2014).

    Article  ADS  Google Scholar 

  26. Rustagi, A. & Kemper, A. F. Photoemission signature of excitons. Phys. Rev. B 97, 235310 (2018).

    Article  ADS  Google Scholar 

  27. Sugimoto, K., Nishimoto, S., Kaneko, T. & Ohta, Y. Strong coupling nature of the excitonic insulator state in Ta2NiSe5. Phys. Rev. Lett. 120, 247602 (2018).

    Article  ADS  Google Scholar 

  28. Bronold, F. X. & Fehske, H. Possibility of an excitonic insulator at the semiconductor–semimetal transition. Phys. Rev. B 74, 165107 (2006).

    Article  ADS  Google Scholar 

  29. Zenker, B., Ihle, D., Bronold, F. X. & Fehske, H. Electron–hole pair condensation at the semimetal–semiconductor transition: a BCS–BEC crossover scenario. Phys. Rev. B 85, 121102(R) (2012).

    Article  ADS  Google Scholar 

  30. Seki, K., Eder, R. & Ohta, Y. BCS–BEC crossover in the extended Falikov–Kimball model: variational cluster approach. Phys. Rev. B 84, 245106 (2011).

    Article  ADS  Google Scholar 

  31. Kim, S. Y. et al. Layer-confined excitonic insulating phase in ultrathin Ta2NiSe5 crystals. ACS Nano 10, 8888–8894 (2016).

    Article  Google Scholar 

  32. Larkin, T. I. et al. Infrared phonon spectra of quasi-one-dimensional Ta2NiSe5. Phys. Rev. B 98, 123113 (2018).

    Article  Google Scholar 

  33. Kaneko, T., Toriyama, T., Konishi, T. & Ohta, Y. Orthorhombic-to-monoclinic phase transition of Ta2NiSe5 induced by the Bose–Einstein condensation of excitons. Phys. Rev. B 87, 035121 (2013).

    Article  ADS  Google Scholar 

  34. Mazza, G. et al. Nature of symmetry breaking at the excitonic insulator transition: Ta2NiSe5. Phys. Rev. Lett. 124, 197601 (2020).

    Article  ADS  Google Scholar 

  35. Baldini, E. et al. The spontaneous symmetry breaking in Ta2NiSe5 is structural in nature. Preprint at https://arxiv.org/pdf/2007.02909.pdf (2020).

  36. Harmanson, J. Final-state symmetry and polarization effects in angle-resolved photoemission spectroscopy. Solid State Commun. 22, 9–11 (1977).

    Article  ADS  Google Scholar 

  37. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  Google Scholar 

  38. Watson, M. D. et al. Band hybridization at the semimetal–semiconductor transition of Ta2NiSe5 enabled by mirror-symmetry breaking. Phys. Rev. Res. 2, 013236 (2020).

    Article  Google Scholar 

  39. Ang, R. et al. Real-space coexistence of the melted Mott state and superconductivity in Fe-substituted 1T-TaS2. Phys. Rev. Lett. 109, 176403 (2012).

    Article  ADS  Google Scholar 

  40. Tanimura, H., Tanimura, K. & van Loosdrecht, P. H. M. Dynamics of incoherent exciton formation in Cu2O: time- and angle-resolved photoemission spectroscopy. Phys. Rev. B 100, 115204 (2019).

    Article  ADS  Google Scholar 

  41. Cui, X. et al. Transient excitons at metal surfaces. Nat. Phys. 10, 505–509 (2014).

    Article  Google Scholar 

  42. Christiansen, D., Selig, M., Malic, E., Ernstorfer & Knorr, A. Theory of exciton dynamics in time-resolved ARPES: intra- and intervalley scattering in two-dimensional semiconductors. Phys. Rev. B 100, 205401 (2019).

    Article  ADS  Google Scholar 

  43. Ueta, M., Kanzaki, H., Kobayashi, K., Toyozawa, Y. & Hanamura, E. Excitonic Processes in Solids (Springer, 1986).

  44. Subedi, A. Orthorhombic-to-monoclinic transition in Ta2NiSe5 due to a zone-center optical phonon instability. Phys. Rev. Mater. 4, 083601 (2020).

    Article  Google Scholar 

  45. Nakano, A. et al. Antiferroelectric distortion with anomalous phonon softening in the excitonic insulator Ta2NiSe5. Phys. Rev. B 98, 045139 (2018).

    Article  ADS  Google Scholar 

  46. Monney, C. et al. Spontaneous exciton condensation in 1T-TiSe2: BCS-like approach. Phys. Rev. B 79, 045116 (2009).

    Article  ADS  Google Scholar 

  47. Monney, C., Monney, G., Aebi, P. & Beck, H. Electron–hole fluctuation phase in 1T-TiSe2. Phys. Rev. B 85, 235150 (2012).

    Article  ADS  Google Scholar 

  48. Mu, K. et al. Electronic structures of layered Ta2NiS5 single crystals revealed by high-resolution angle-resolved photoemission spectroscopy. J. Mater. Chem. C 6, 3976–3981 (2018).

    Google Scholar 

  49. Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002).

    Article  ADS  Google Scholar 

  50. Dubin, F. et al. Macroscopic coherence of a single exciton state in an organic quantum wire. Nat. Phys. 2, 32–35 (2006).

    Article  Google Scholar 

  51. Werdehausen, D. et al. Coherent order parameter oscillations in the ground state of the excitonic insulator Ta2NiSe5. Sci. Adv. 4, eaap8652 (2018).

    Article  ADS  Google Scholar 

  52. Andrich, P. et al. Imaging the coherent propagation of collective modes in the excitonic insulator candidate Ta2NiSe5 at room temperature. Preprint at https://arxiv.org/pdf/2003.10799.pdf (2020).

  53. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  Google Scholar 

  54. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  55. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  56. Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B.-G. Park for experimental help and C. Park, A. Kemper and A. Rutsagi for fruitful discussions. This work was supported by the Institute for Basic Science (IBS), Korea, under project code IBS-R014-D01 (H.W.Y.), and also by the National Research Foundation of Korea (NRF) through the SRC (no. 2018R1A5A6075964; J.S.K.) and the Max Planck-POSTECH Center (no. 2016K1A4A4A01922028; J.S.K.).

Author information

Authors and Affiliations

Authors

Contributions

K.F. and R.S. measured the experimental data. K.F. analysed the data and performed the computations on ARPES spectra simulations. K.J.K. performed the electronic structure calculations. C.I.K. and J.S.K. prepared the samples. H.W.Y. and J.K. were responsible for experimental infrastructures. K.F., R.S. and J.K. maintained the ARPES endstation. K.F. and H.W.Y. wrote the manuscript with input and discussions from the co-authors. H.W.Y. was responsible for overall project planning and direction.

Corresponding author

Correspondence to Han Woong Yeom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1–4.

Source data

Source Data Fig. 2

Numerical source data for Fig. 2e–h.

Source Data Fig. 3

Numerical source data for Fig. 3e,f.

Source Data Fig. 4

Numerical source data for Fig. 4b,e,f.

Source Data Fig. 5

Numerical source data for Fig. 5b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukutani, K., Stania, R., Il Kwon, C. et al. Detecting photoelectrons from spontaneously formed excitons. Nat. Phys. 17, 1024–1030 (2021). https://doi.org/10.1038/s41567-021-01289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01289-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing