Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A rigorous and robust quantum speed-up in supervised machine learning

Abstract

Recently, several quantum machine learning algorithms have been proposed that may offer quantum speed-ups over their classical counterparts. Most of these algorithms are either heuristic or assume that data can be accessed quantum-mechanically, making it unclear whether a quantum advantage can be proven without resorting to strong assumptions. Here we construct a classification problem with which we can rigorously show that heuristic quantum kernel methods can provide an end-to-end quantum speed-up with only classical access to data. To prove the quantum speed-up, we construct a family of datasets and show that no classical learner can classify the data inverse-polynomially better than random guessing, assuming the widely believed hardness of the discrete logarithm problem. Furthermore, we construct a family of parameterized unitary circuits, which can be efficiently implemented on a fault-tolerant quantum computer, and use them to map the data samples to a quantum feature space and estimate the kernel entries. The resulting quantum classifier achieves high accuracy and is robust against additive errors in the kernel entries that arise from finite sampling statistics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Quantum kernel estimation.
Fig. 2: Learning concept class \({\mathcal{C}}\) by a quantum feature map.

Data availability

Data sharing is not applicable to this paper as no datasets were generated or analysed during the current study.

References

  1. 1.

    Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    ADS  Article  Google Scholar 

  2. 2.

    Arunachalam, S. & de Wolf, R. Guest column: a survey of quantum learning theory. SIGACT News 48, 41–67 (2017).

    MathSciNet  Article  Google Scholar 

  3. 3.

    Dunjko, V. & Briegel, H. J. Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81, 074001 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Ciliberto, C. et al. Quantum machine learning: a classical perspective. Proc. R. Soc. A. 474, 20170551 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019).

    ADS  Article  Google Scholar 

  6. 6.

    Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    Wiebe, N., Braun, D. & Lloyd, S. Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 050505 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. Preprint at https://arxiv.org/pdf/1307.0411.pdf (2013).

  9. 9.

    Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum principal component analysis. Nat. Phys. 10, 631–633 (2014).

    Article  Google Scholar 

  10. 10.

    Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Lloyd, S., Garnerone, S. & Zanardi, P. Quantum algorithms for topological and geometric analysis of data. Nat. Commun. 7, 10138 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Cong, I. & Duan, L. Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18, 073011 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Kerenidis, I. & Prakash, A. Quantum recommendation systems. In Proc. 8th Innovations in Theoretical Computer Science Conference, Leibniz International Proc. Informatics Vol. 67 (ed. Papadimitriou, C. H.) 49:1–49:21 (Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2017).

  14. 14.

    Brandão, F. G. S. L. et al. Quantum SDP solvers: large speed-ups, optimality and applications to quantum learning. In Proc. 46th International Colloquium on Automata, Languages and Programming, Leibniz International Proc. Informatics Vol. 132 (eds Baier, C. et al.) 27:1–27:14 (Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2019); http://drops.dagstuhl.de/opus/volltexte/2019/10603

  15. 15.

    Rebentrost, P., Steffens, A., Marvian, I. & Lloyd, S. Quantum singular-value decomposition of nonsparse low-rank matrices. Phys. Rev. A 97, 012327 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Zhao, Z., Fitzsimons, J. K. & Fitzsimons, J. F. Quantum-assisted Gaussian process regression. Phys. Rev. A 99, 052331 (2019).

    ADS  Article  Google Scholar 

  17. 17.

    Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293 (2015).

    Article  Google Scholar 

  18. 18.

    Tang, E. A quantum-inspired classical algorithm for recommendation systems. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing (eds Charikar, M. & Cohen, E.) 217–228 (ACM, 2019); https://doi.org/10.1145/3313276.3316310

  19. 19.

    Tang, E. Quantum-inspired classical algorithms for principal component analysis and supervised clustering. Preprint at https://arxiv.org/pdf/1811.00414.pdf (2018).

  20. 20.

    Chia, N.-H. et al. Quantum-inspired algorithms for solving low-rank linear equation systems with logarithmic dependence on the dimension. In 31st International Symposium on Algorithms and Computation, Leibniz International Proc. Informatics Vol. 181 (eds Cao, Y. et al) 47:1–47:17 (Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2020); https://doi.org/10.4230/LIPIcs.ISAAC.2020.47

  21. 21.

    Ding, C., Bao, T.-Y. & Huang, H.-L. Quantum-inspired support vector machine. In IEEE Transactions on Neural Networks and Learning Systems 1–13 (IEEE, 2021); https://doi.org/10.1109/TNNLS.2021.3084467

  22. 22.

    Chia, N.-H. et al. Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning. In Proc. 52nd Annual ACM SIGACT Symposium on Theory of Computing (eds Makarychev, K. et al.) 387–400 (ACM, 2020); https://doi.org/10.1145/3357713.3384314

  23. 23.

    Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K. Quantum circuit learning. Phys. Rev. A 98, 032309 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors. Preprint at https://arxiv.org/pdf/1802.06002.pdf (2018).

  25. 25.

    Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    Liu, J.-G. & Wang, L. Differentiable learning of quantum circuit born machines. Phys. Rev. A 98, 062324 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    Dallaire-Demers, P.-L. & Killoran, N. Quantum generative adversarial networks. Phys. Rev. A 98, 012324 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Lloyd, S. & Weedbrook, C. Quantum generative adversarial learning. Phys. Rev. Lett. 121, 040502 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).

    ADS  Article  Google Scholar 

  30. 30.

    Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019).

    ADS  Article  Google Scholar 

  31. 31.

    Vapnik, V. The Nature of Statistical Learning Theory (Springer Science & Business Media, 2013).

  32. 32.

    Shawe-Taylor, J. & Cristianini, N. On the generalization of soft margin algorithms. IEEE Trans. Inf. Theory 48, 2721–2735 (2002).

    MathSciNet  Article  Google Scholar 

  33. 33.

    Kearns, M. J. The Computational Complexity of Machine Learning (MIT Press, 1990).

  34. 34.

    Servedio, R. A. & Gortler, S. J. Equivalences and separations between quantum and classical learnability. SIAM J. Comput. 33, 1067–1092 (2004).

    MathSciNet  Article  Google Scholar 

  35. 35.

    Sweke, R., Seifert, J.-P., Hangleiter, D. & Eisert, J. On the quantum versus classical learnability of discrete distributions. Quantum 5, 417 (2021).

    Article  Google Scholar 

  36. 36.

    Harrow, A. W. Small quantum computers and large classical data sets. Preprint at https://arxiv.org/pdf/2004.00026.pdf (2020).

  37. 37.

    Gao, X., Zhang, Z.-Y. & Duan, L.-M. A quantum machine learning algorithm based on generative models. Sci. Adv. 4, eaat9004 (2018).

    ADS  Article  Google Scholar 

  38. 38.

    Shawe-Taylor, J. & Cristianini, N. Kernel Methods for Pattern Analysis (Cambridge Univ. Press, 2004).

  39. 39.

    Kearns, M. J. & Vazirani, U. V. An Introduction to Computational Learning Theory (MIT Press, 1994).

  40. 40.

    Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

    MathSciNet  Article  Google Scholar 

  41. 41.

    Blum, M. & Micali, S. How to generate cryptographically strong sequences of pseudo-random bits. SIAM J. Comput. 13, 850–864 (1984).

    MathSciNet  Article  Google Scholar 

  42. 42.

    Aharonov, D. & Ta-Shma, A. Adiabatic quantum state generation. SIAM J. Comput. 37, 47–82 (2007).

    MathSciNet  Article  Google Scholar 

  43. 43.

    Daniel, J. W. Stability of the solution of definite quadratic programs. Math. Program. 5, 41–53 (1973).

    MathSciNet  Article  Google Scholar 

  44. 44.

    Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  45. 45.

    Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).

    Google Scholar 

  46. 46.

    Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).

    ADS  Article  Google Scholar 

  47. 47.

    Kusumoto, T., Mitarai, K., Fujii, K., Kitagawa, M. & Negoro, M. Experimental quantum kernel trick with nuclear spins in a solid. npj Quantum Inf. 7, 92 (2021).

    ADS  Article  Google Scholar 

  48. 48.

    Bartkiewicz, K. et al. Experimental kernel-based quantum machine learning in finite feature space. Sci. Rep. 10, 12356 (2020).

    ADS  Article  Google Scholar 

  49. 49.

    Peters, E. et al. Machine learning of high dimensional data on a noisy quantum processor. Preprint at https://arxiv.org/pdf/2101.09581.pdf (2021).

Download references

Acknowledgements

We thank S. Bravyi and R. Kothari for helpful comments and discussions. Y.L. was supported by DOE NQISRC QSA grant number FP00010905, Vannevar Bush faculty fellowship N00014-17-1-3025 and NSF award DMR-1747426. Part of this work was done when Y.L. was a research intern at IBM. S.A. and K.T. acknowledge support from the MIT-IBM Watson AI Lab under the project ‘Machine Learning in Hilbert Space’, the IBM Research Frontiers Institute and ARO grant W911NF-20-1-0014.

Author information

Affiliations

Authors

Contributions

All authors contributed important ideas during initial discussions and contributed equally to deriving the technical proofs and writing the manuscript.

Corresponding author

Correspondence to Kristan Temme.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks Ewin Tang and Zhikuan Zhao for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional proof details and derivations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Arunachalam, S. & Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. (2021). https://doi.org/10.1038/s41567-021-01287-z

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing