Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structures in the terms of the Vlasov equation observed at Earth’s magnetopause

Abstract

The Vlasov equation describes collisionless plasmas in the continuum limit and applies to many fundamental plasma energization phenomena. Because this equation governs the evolution of plasma in six-dimensional phase space, studies of its structure have mostly been limited to numerical or analytical methods. Here terms of the Vlasov equation are determined from observations of electron phase-space density gradients measured by the four Magnetospheric Multiscale spacecraft in the vicinity of magnetic reconnection at Earth’s magnetopause. We identify which electrons in velocity space substantially support the electron pressure divergence within electron-scale current layers. Furthermore, we isolate and characterize the effects of density, velocity and temperature gradients on the velocity-space structure and dynamics of these electrons. Unipolar, bipolar and ring structures in the electron phase-space density gradients are compared to a simplified Maxwellian model and correspond to localized gradients in density, velocity and temperature, respectively. These structures have implications for the ability of collisionless plasmas to maintain kinetic Vlasov equilibrium. The results provide a kinetic perspective relevant to how the electron pressure divergence may develop to violate the electron frozen-in condition and sustain electron-scale energy conversion processes, such as the reconnection electric field, in collisionless space plasma environments.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Model predictions of fe and v fe structures for various plasma gradients.
Fig. 2: MMS observations of unipolar 2fe and bipolar v fe for a density gradient ne.
Fig. 3: MMS observations of bipolar 2fe and quadrupolar v fe for a velocity gradient Ue.
Fig. 4: MMS observations of ring-shaped 2fe and v fe for a temperature gradient Te.
Fig. 5: MMS observations of crescent-shaped 2fe and v fe for a combination of gradients.

Data availability

All MMS data are available to the public via https://lasp.colorado.edu/mms/sdc/public/.

Code availability

The code used to plot the MMS gradient distributions will be made available upon reasonable request.

References

  1. Vlasov, A. A. On the kinetic theory of an assembly of particles with collective interaction. J. Phys. (USSR) 9, 25–40 (1945).

    MathSciNet  MATH  Google Scholar 

  2. Nicholson, D. R Introduction to Plasma Theory (Wiley, 1983).

  3. Landau, L. D. On the vibrations of the electronic plasma. J. Phys. (USSR) 10, 25–34 (1946).

    MathSciNet  MATH  Google Scholar 

  4. Matthaeus, W. H. & Lamkin, S. L. Turbulent magnetic reconnection. Phys. Fluids 29, 2513–2534 (1986).

    ADS  Article  Google Scholar 

  5. Daughton, W. Nonlinear dynamics of thin current sheets. Phys. Plasmas 9, 3668–3678 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  6. Sundkvist, D., Retinò, A., Vaivads, A. & Bale, S. D. Dissipation in turbulent plasma due to reconnection in thin current sheets. Phys. Rev. Lett. 99, 025004 (2007).

    ADS  Article  Google Scholar 

  7. Gershman, D. J. et al. Wave–particle energy exchange directly observed in a kinetic Alfvén-branch wave. Nat. Commun. 8, 14719 (2017).

    ADS  Article  Google Scholar 

  8. Viñas, A. F. & Klimas, A. J. Flux-balance Vlasov simulation with filamentation filtration. J. Comput. Phys. 375, 983–1004 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  9. Li, T. C., Howes, G., Klein, K., Liu, Y.-H. & TenBarge, J. M. Collisionless energy transfer in kinetic turbulence: field-particle correlations in Fourier space. J. Plasma Phys. 85, 905850406 (2019).

    Article  Google Scholar 

  10. Chen, C., Klein, K. & Howes, G. Evidence for electron Landau damping in space plasma turbulence. Nat. Commun. 10, 740 (2019).

    ADS  Article  Google Scholar 

  11. Moore, T. E., Burch, J. L. & Torbert, R. B. Magnetic reconnection. Nat. Phys. 11, 611–613 (2015).

    Article  Google Scholar 

  12. Cassak, P. A. Inside the black box: magnetic reconnection and the magnetospheric multiscale mission. Space Weather 14, 186–197 (2016).

    ADS  Article  Google Scholar 

  13. Burch, J. L. et al. Electron-scale measurements of magnetic reconnection in space. Science 352, aaf2939 (2016).

    ADS  Article  Google Scholar 

  14. Torbert, R. B. et al. Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. Science 362, 1391–1395 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  15. Webster, J. M. et al. Magnetospheric multiscale dayside reconnection electron diffusion region events. J. Geophys. Res. Space Phys. 123, 4858–4878 (2018).

    ADS  Article  Google Scholar 

  16. Phan, T. D. et al. Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature 557, 202–206 (2018).

    ADS  Article  Google Scholar 

  17. Hesse, M. & Cassak, P. A. Magnetic reconnection in the space sciences: past, present and future. J. Geophys. Res. Space Phys. 125, e2018JA025935 (2020).

    ADS  Article  Google Scholar 

  18. Roth, M., De Keyser, J. & Kuznetsova, M. M. Vlasov theory of the equilibrium structure of tangential discontinuities in space plasmas. Space Sci. Rev. 76, 251–317 (1996).

    ADS  Article  Google Scholar 

  19. Neukirch, T., Wilson, F. & Allanson, O. Collisionless current sheet equilibria. Plasma Phys. Control. Fusion 60, 014008 (2018).

    ADS  Article  Google Scholar 

  20. Harris, E. G. On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115–121 (1962).

    MATH  Article  Google Scholar 

  21. Chen, L.-J. et al. Evidence of an extended electron current sheet and its neighboring magnetic island during magnetotail reconnection. J. Geophys. Res. Space Phys. 113, A12213 (2008).

    ADS  Article  Google Scholar 

  22. Egedal, J., Daughton, W. & Le, A. Large-scale electron acceleration by parallel electric fields during magnetic reconnection. Nat. Phys. 8, 321–324 (2012).

    Article  Google Scholar 

  23. Bessho, N., Chen, L.-J., Shuster, J. R. & Wang, S. Electron distribution functions in the electron diffusion region of magnetic reconnection: physics behind the fine structures. Geophys. Res. Lett. 41, 8688–8695 (2014).

    ADS  Article  Google Scholar 

  24. Shuster, J. R. et al. Spatiotemporal evolution of electron characteristics in the electron diffusion region of magnetic reconnection: implications for acceleration and heating. Geophys. Res. Lett. 42, 2586–2593 (2015).

    ADS  Article  Google Scholar 

  25. Wang, S. et al. Electron heating in the exhaust of magnetic reconnection with negligible guide field. J. Geophys. Res. Space Phys. 121, 2104–2130 (2016).

    ADS  Article  Google Scholar 

  26. Yamada, M. et al. Experimental investigation of the neutral sheet profile during magnetic reconnection. Phys. Plasmas 7, 1781–1787 (2000).

    ADS  Article  Google Scholar 

  27. Pritchett, P. L. Collisionless magnetic reconnection in an asymmetric current sheet. J. Geophys. Res. Space Phys. 113, A06210 (2008).

    ADS  Article  Google Scholar 

  28. Daughton, W., Nakamura, T. K. M., Karimabadi, H., Roytershteyn, V. & Loring, B. Computing the reconnection rate in turbulent kinetic layers by using electron mixing to identify topology. Phys. Plasmas 21, 052307 (2014).

    ADS  Article  Google Scholar 

  29. Swisdak, M. et al. Localized and intense energy conversion in the diffusion region of asymmetric magnetic reconnection. Geophys. Res. Lett. 45, 5260–5267 (2018).

    ADS  Article  Google Scholar 

  30. Alpers, W. Steady state charge neutral models of the magnetopause. Astrophys. Space Sci. 5, 425–437 (1969).

    ADS  Article  Google Scholar 

  31. Channell, P. J. Exact Vlasov–Maxwell equilibria with sheared magnetic fields. Phys. Fluids 19, 1541–1545 (1976).

    ADS  Article  Google Scholar 

  32. Mottez, F. Exact nonlinear analytic Vlasov–Maxwell tangential equilibria with arbitrary density and temperature profiles. Phys. Plasmas 10, 2501–2508 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  33. Aunai, N., Belmont, G. & Smets, R. First demonstration of an asymmetric kinetic equilibrium for a thin current sheet. Phys. Plasmas 20, 110702 (2013).

    ADS  Article  Google Scholar 

  34. Allanson, O., Wilson, F., Neukirch, T., Liu, Y.-H. & Hodgson, J. D. B. Exact Vlasov–Maxwell equilibria for asymmetric current sheets. Geophys. Res. Lett. 44, 8685–8695 (2017).

    ADS  Article  Google Scholar 

  35. Mottez, F. The pressure tensor in tangential equilibria. Ann. Geophys. 22, 3033–3037 (2004).

    ADS  Article  Google Scholar 

  36. Newman, D. L., Lapenta, G. & Goldman, M. Dynamics of Electron-scale Current Sheet Wquilibria based on MMS Observations American Geophysical Union Fall Meeting, eLightning Presentation SM24B-13 (Earth and Space Science Open Archive, 2019); https://doi.org/10.1002/essoar.10502614.1

  37. Newman, D. L., Sen, N. & Goldman, M. V. ‘Reduced’ multidimensional Vlasov simulations, with applications to electrostatic structures in space plasmas. Phys. Plasmas 14, 055907 (2007).

    ADS  Article  Google Scholar 

  38. Holmes, J. C. et al. Structure of electron-scale plasma mixing along the dayside reconnection separatrix. J. Geophys. Res. Space Phys. 124, 8788–8803 (2019).

    ADS  Article  Google Scholar 

  39. Palmroth, M. et al. Vlasov methods in space physics and astrophysics. Living Rev. Comput. Astrophys. 4, 1 (2018).

    ADS  Article  Google Scholar 

  40. von Alfthan, S. et al. Vlasiator: first global hybrid-Vlasov simulations of Earth’s foreshock and magnetosheath. J. Atmos. Sol. Terr. Phys. 120, 24–35 (2014).

    ADS  Article  Google Scholar 

  41. Hoilijoki, S. et al. Reconnection rates and X line motion at the magnetopause: global 2D-3V hybrid-Vlasov simulation results. J. Geophys. Res. Space Phys. 122, 2877–2888 (2017).

    ADS  Article  Google Scholar 

  42. Vasyliunas, V. M. Theoretical models of magnetic field line merging. Rev. Geophys. 13, 303–336 (1975).

    ADS  Article  Google Scholar 

  43. Viñas, A. F. & Gurgiolo, C. Spherical harmonic analysis of particle velocity distribution function: comparison of moments and anisotropies using cluster data. J. Geophys. Res. Space Phys. 114, A01105 (2009).

    ADS  Article  Google Scholar 

  44. Torbert, R. B. et al. Estimates of terms in Ohm’s law during an encounter with an electron diffusion region. Geophys. Res. Lett. 43, 5918–5925 (2016).

    ADS  Article  Google Scholar 

  45. Shuster, J. R. et al. Hodographic approach for determining spacecraft trajectories through magnetic reconnection diffusion regions. Geophys. Res. Lett. 44, 1625–1633 (2017).

    ADS  Article  Google Scholar 

  46. Rager, A. C. et al. Electron crescent distributions as a manifestation of diamagnetic drift in an electron-scale current sheet: magnetospheric multiscale observations using new 7.5-ms fast plasma investigation moments. Geophys. Res. Lett. 45, 578–584 (2018).

    ADS  Article  Google Scholar 

  47. Hesse, M., Neukirch, T., Schindler, K., Kuznetsova, M. & Zenitani, S. The diffusion region in collisionless magnetic reconnection. Space Sci. Rev. 160, 3–23 (2011).

    ADS  Article  Google Scholar 

  48. Hesse, M., Aunai, N., Sibeck, D. & Birn, J. On the electron diffusion region in planar, asymmetric, systems. Geophys. Res. Lett. 41, 8673–8680 (2014).

    ADS  Article  Google Scholar 

  49. Genestreti, K. J. et al. MMS observation of asymmetric reconnection supported by 3-D electron pressure divergence. J. Geophys. Res. Space Phys. 123, 1806–1821 (2018).

    ADS  Article  Google Scholar 

  50. Shuster, J. R. et al. MMS measurements of the Vlasov equation: probing the electron pressure divergence within thin current sheets. Geophys. Res. Lett. 46, 7862–7872 (2019).

    ADS  Article  Google Scholar 

  51. Pollock, C. et al. Fast plasma investigation for magnetospheric multiscale. Space Sci. Rev. 199, 331–406 (2016).

    ADS  Article  Google Scholar 

  52. Phan, T. D. et al. MMS observations of electron-scale filamentary currents in the reconnection exhaust and near the X line. Geophys. Res. Lett. 43, 6060–6069 (2016).

    ADS  Article  Google Scholar 

  53. Mahajan, S. M. Exact and almost exact solutions to the Vlasov–Maxwell system. Phys. Fluids B Plasma Phys. 1, 43–54 (1989).

    MathSciNet  Article  Google Scholar 

  54. Klimas, A. J. & Viñas, A. F. Open-boundary spectral and flux-balance Vlasov simulation. J. Plasma Phys. 85, 905850610 (2019).

    Article  Google Scholar 

  55. Gershman, D. J. et al. Spacecraft and instrument photoelectrons measured by the dual electron spectrometers on MMS. J. Geophys. Res. Space Phys. 122, 11548–11558 (2017).

    ADS  Article  Google Scholar 

  56. Gershman, D. J., Dorelli, J. C., F.-Viñas, A. & Pollock, C. J. The calculation of moment uncertainties from velocity distribution functions with random errors. J. Geophys. Res. Space Phys. 120, 6633–6645 (2015).

    ADS  Article  Google Scholar 

  57. Gurnett, D. A. & Bhattacharjee, A. Introduction to Plasma Physics: With Space and Laboratory Applications (Cambridge Univ. Press, 2005).

    MATH  Book  Google Scholar 

  58. Harvey, C. C. in Analysis Methods for Multi-Spacecraft Data ISSI Scientific Reports Series (eds Paschmann, G. & Daly, P. W.) 307–322 (ISSI/ESA, 1998).

  59. Wetherton, B. A., Egedal, J., Montag, P., Le, A. & Daughton, W. A drift-kinetic method for obtaining gradients in plasma properties from single-point distribution function data. J. Geophys. Res. Space Phys. 125, e2020JA027965 (2020).

    ADS  Article  Google Scholar 

  60. Hazeltine, R. D. & Meiss, J. D. Plasma Confinement (Addison-Wesley, 1992).

    Google Scholar 

  61. Graham, D. B. et al. Electron currents and heating in the ion diffusion region of asymmetric reconnection. Geophys. Res. Lett. 43, 4691–4700 (2016).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We especially thank the MMS instrument teams for their dedication and commitment to providing unprecedented, high-quality datasets. J.R.S. thanks L. Morrison for helpful discussions regarding the intricacies of phase space. This research was supported in part by NASA grants to the Fast Plasma Investigation, FIELDS team and Theory and Modeling programme of the MMS mission. J.R.S. was supported by NASA grants 80NSSC19K1092 and 80NSSC21K0732. S.W. was supported by NASA grant 80NSSC18K1369 and DOE grant DE-SC0020058. P.A.C. was supported by NASA grants NNX16AG76G and 80NSSC19M0146, NSF grants AGS-1602769 and PHY-1804428 and DOE grant DE-SC0020294. R.E.D. was supported by NASA grant 80NSSC19K0254. V.M.U. was supported by NASA grant NNG11PL10A.

Author information

Authors and Affiliations

Authors

Contributions

J.R.S. performed the MMS multi-spacecraft data analysis, developed the analytical model for comparison to the MMS observations and prepared the manuscript. D.J.G. and J.C.D. assisted with interpretation of the plasma distribution and gradient structures, the use of MMS FPI data, and the preparation of the text and figures. B.L.G. supported the project at both the institutional and mission levels, and helped to ensure the overall quality of the MMS and FPI data. S.W., N.B. and L.-J.C. aided in the interpretation of the kinetic velocity distribution measurements in the context of magnetopause magnetic reconnection observations. P.A.C., S.J.S., R.E.D. and C.S. offered careful critiques of the scientific results, figures and conclusions of the manuscript, and provided useful feedback regarding contextual and relevant literature related to this research. V.M.U. and W.R.P. provided insightful feedback and discussion regarding the data-model comparisons and concerning the overall conclusions and future implications of this research. A.F.V., J.N. and L.A.A. assisted with the overall interpretation of the results. D.E.d.S. offered technical support and data analysis tools that aided in the identification of the MMS events presented in the manuscript. R.B.T. assisted with the interpretation of the electric-field data in comparison to the particle measurements.

Corresponding author

Correspondence to J. R. Shuster.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks Jan Egedal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shuster, J.R., Gershman, D.J., Dorelli, J.C. et al. Structures in the terms of the Vlasov equation observed at Earth’s magnetopause. Nat. Phys. 17, 1056–1065 (2021). https://doi.org/10.1038/s41567-021-01280-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01280-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing