Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrafast switching to an insulating-like metastable state by amplitudon excitation of a charge density wave

Abstract

In correlated electron materials, multiple electronic phases may appear next to each other in their phase diagram, and these can be tuned, for example, by applying static pressure or chemical doping1,2,3. These perturbations modify the subtle balance between the electron transfer energy and Coulomb repulsion between electrons. It is, therefore, tempting to explore whether new states of matter can be accessed through the direct tuning of their order parameters, for example, by driving a collective mode of the emergent phase. Here we demonstrate that the direct excitation of the amplitude mode of a charge density wave (amplitudon) by an intense terahertz pulse in a layered transition metal dichalcogenide compound, namely, 3R-Ta1+xSe2, leads to the appearance of an insulating-like metastable state. The formation dynamics of the metastable phase manifest in the opening of a gap in the optical conductivity spectrum, and we show that they synchronize with an oscillation of the amplitudon. This indicates the intimate interplay between the order parameters of the equilibrium charge density wave and the metastable states.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Characteristics of the 3R-Ta1+xSe2 thin film in equilibrium.
Fig. 2: CDW amplitude mode of the 3R-Ta1+xSe2 excited by NIR or THz pulse.
Fig. 3: Gap emergence by THz pulse excitation.
Fig. 4: Dynamics of gap formation.

Data availability

Source data are provided with this paper. All other data that support the findings of this paper are available from the corresponding authors upon request.

References

  1. 1.

    Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

    ADS  Article  Google Scholar 

  2. 2.

    Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001 (2011).

    ADS  Article  Google Scholar 

  3. 3.

    Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Zhang, J. et al. Cooperative photoinduced metastable phase control in strained manganite films. Nat. Mater. 15, 956–960 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Ichikawa, H. et al. Transient photoinduced ‘hidden’ phase in a manganite. Nat. Mater. 10, 101–105 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Han, T.-R. T. et al. Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography. Sci. Adv. 1, e1400173 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    Yang, X. et al. Terahertz-light quantum tuning of a metastable emergent phase hidden by superconductivity. Nat. Mater. 17, 586–591 (2018).

    ADS  Article  Google Scholar 

  10. 10.

    Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16, 159–163 (2020).

    Article  Google Scholar 

  11. 11.

    Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876 (2012).

    Article  Google Scholar 

  12. 12.

    Torchinsky, D. H., Mahmood, F., Bollinger, A. T., Božović, I. & Gedik, N. Fluctuating charge-density waves in a cuprate superconductor. Nat. Mater. 12, 387–391 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Hinton, J. P. et al. New collective mode in YBa2Cu3O6+x observed by time-domain reflectometry. Phys. Rev. B 88, 060508 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    ADS  Article  Google Scholar 

  15. 15.

    Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    ADS  Article  Google Scholar 

  18. 18.

    Li, X. et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    ADS  Article  Google Scholar 

  19. 19.

    Li, T. et al. Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations. Nature 496, 69–73 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Kim, K. W. et al. Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations. Nat. Mater. 11, 497–501 (2012).

    ADS  Article  Google Scholar 

  21. 21.

    Shimano, R. & Tsuji, N. Higgs mode in superconductors. Annu. Rev. Condens. Matter Phys. 11, 103–124 (2020).

    Article  Google Scholar 

  22. 22.

    Tanaka, Y. et al. Superconducting 3R-Ta1+xSe2 with giant in-plane upper critical fields. Nano Lett. 20, 1725–1730 (2020).

    ADS  Article  Google Scholar 

  23. 23.

    Moncton, D. E., Axe, J. D. & DiSalvo, F. J. Study of superlattice formation in 2H-NbSe2 and 2H-TaSe2 by neutron scattering. Phys. Rev. Lett. 34, 734–737 (1975).

    ADS  Article  Google Scholar 

  24. 24.

    Sugai, S. & Murase, K. Generalized electronic susceptibility and charge-density waves in 2H-TaSe2 by Raman scattering. Phys. Rev. B 25, 2418–2427 (1982).

    ADS  Article  Google Scholar 

  25. 25.

    Rossnagel, K., Rotenberg, E., Koh, H., Smith, N. V. & Kipp, L. Fermi surface, charge-density-wave gap, and kinks in 2H-TaSe2. Phys. Rev. B 72, 121103 (2005).

    ADS  Article  Google Scholar 

  26. 26.

    Borisenko, S. V. et al. Pseudogap and charge density waves in two dimensions. Phys. Rev. Lett. 100, 196402 (2008).

    ADS  Article  Google Scholar 

  27. 27.

    Wang, C., Giambattista, B., Slough, C. G., Coleman, R. V. & Subramanian, M. A. Energy gaps measured by scanning tunneling microscopy. Phys. Rev. B 42, 8890–8906 (1990).

    ADS  Article  Google Scholar 

  28. 28.

    Dai, Z., Xue, Q., Gong, Y., Slough, C. G. & Coleman, R. V. Scanning-probe-microscopy studies of superlattice structures and density-wave structures in 2H-NbSe2 2H-TaSe2, and 2H-TaS2 induced by Fe doping. Phys. Rev. B 48, 14543–14555 (1993).

    ADS  Article  Google Scholar 

  29. 29.

    Vescoli, V., Degiorgi, L., Berger, H. & Forró, L. Dynamics of correlated two-dimensional materials: the 2H-TaSe2 case. Phys. Rev. Lett. 81, 453–456 (1998).

    ADS  Article  Google Scholar 

  30. 30.

    Demsar, J., Forró, L., Berger, H. & Mihailovic, D. Femtosecond snapshots of gap-forming charge-density-wave correlations in quasi-two-dimensional dichalcogenides 1T-TaS2 and 2H-TaSe2. Phys. Rev. B 66, 041101 (2002).

    ADS  Article  Google Scholar 

  31. 31.

    Rajasekaran, S. et al. Parametric amplification of a superconducting plasma wave. Nat. Phys. 12, 1012–1016 (2016).

    Article  Google Scholar 

  32. 32.

    Kennes, D. M., Wilner, E. Y., Reichman, D. R. & Millis, A. J. Nonequilibrium optical conductivity: general theory and application to transient phases. Phys. Rev. B 96, 054506 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008).

    ADS  Article  Google Scholar 

  34. 34.

    Chen, Y. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 16, 218–224 (2020).

    Article  Google Scholar 

  35. 35.

    Dean, N. et al. Polaronic conductivity in the photoinduced phase of 1T-TaS2. Phys. Rev. Lett. 106, 016401 (2011).

    ADS  Article  Google Scholar 

  36. 36.

    Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    ADS  Article  Google Scholar 

  37. 37.

    Shi, J. et al. Terahertz-driven irreversible topological phase transition in two-dimensional MoTe2. Preprint at https://arxiv.org/abs/1910.13609 (2019).

  38. 38.

    Liang, W. Y. & Beal, A. R. A study of the optical joint density-of-states function. J. Phys. C 9, 2823–2832 (1976).

    ADS  Article  Google Scholar 

  39. 39.

    Mankowsky, R. et al. Dynamical stability limit for the charge density wave in K0.3MoO3. Phys. Rev. Lett. 118, 116402 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Raines, Z. M., Stanev, V. G. & Galitski, V. M. Hybridization of Higgs modes in a bond-density-wave state in cuprates. Phys. Rev. B 92, 184511 (2015).

    ADS  Article  Google Scholar 

  41. 41.

    Schwarz, L. et al. Classification and characterization of nonequilibrium Higgs modes in unconventional superconductors. Nat. Commun. 11, 287 (2020).

    ADS  Article  Google Scholar 

  42. 42.

    Sun, Z. & Millis, A. J. Transient trapping into metastable states in systems with competing orders. Phys. Rev. X 10, 021028 (2020).

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (grant nos. 18H05324, 18H05846, 19H05602, 19H02593 and 19H00653); the A3 Foresight Program; JST CREST grant no. JPMJCR19T3, Japan; JST PRESTO grant no. JPMJPR20AC, Japan; LABEX SEAM grant (ANR-11-IDEX-0005-02); and DIM SIRTEQ grant from Île-de-France region. M.N. was partly supported by the Murata Science Foundation.

Author information

Affiliations

Authors

Contributions

N.Y. and H.S. carried out the optical experiments and analyses. H.M., Y.T., M.N. and Y.I. fabricated the thin-film samples. P.H., M.C. and Y.G. performed Raman scattering measurements. N.Y. and R.S. wrote the manuscript. R.S. conceived the project of this study. All the authors contributed to the discussion and interpretation of the results.

Corresponding authors

Correspondence to Naotaka Yoshikawa or Ryo Shimano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Polarization dependence of the amplitudon excitation.

Squared amplitude of the CDW amplitude mode oscillation obtained from the power spectra of the optical pump-optical probe dynamics, as a function of the polarization angle of the pump pulse with respect to that of the probe pulse.

Extended Data Fig. 2 Temperature dependence of the amplitudon excited by a THz pulse.

a, THz pump-induced transmittance change as a function of tpp at various temperatures. Dashed line is a guide to the eyes showing the softening and broadening of the free oscillation of the CDW amplitude mode after the THz pump. The peak disappears above TCDW. b, Amplitude of the Fourier transformation of (a). The CDW amplitude mode is clearly observed centered at 2.3 THz at low temperatures.

Extended Data Fig. 3 Differential conductivity spectra at long delay.

a, Real and b, imaginary part of the differential optical conductivity spectra at tpp=3, 10, 30 and 150 ps. The sample temperature is 4.3 K and the pulse energy of the THz pump is 0.39 μJ cm−2.

Extended Data Fig. 4 The pump waveform and pump-probe signal with the broadband THz pulse.

a, The waveform of the pump THz pulse. The inset shows its Fourier spectrum. b, Temporal evolution of the change of the probe electric field \({{\Delta}E}_{{\mathrm{probe}}}\) normalized by its original value \(E_{{\mathrm{probe}}}\), as a function of the pump-probe delay time tpp. The vertical dashed line indicates tpp=0.4 ps at which the differential conductivity spectrum shown in Fig. 3f in the main text was measured.

Extended Data Fig. 5 Experimental setup for the THz pump-THz probe spectroscopy.

Experimental setup for THz pump-THz probe measurements. DS: delay stage, HWP: half waveplate, PM: parabolic mirror, BP: black polyethylene, WGP: wire-grid polarizer, QWP: quarter waveplate, WP: Wollaston prism, BPD: balanced photodiode.

Extended Data Fig. 6 Experimental setup for the broadband THz pump-THz probe spectroscopy.

Experimental setup for the broadband THz pump-THz probe measurements. DS: delay stage, HWP: half waveplate, PM: parabolic mirror, BP: black polyethylene, WGP: wire-grid polarizer, QWP: quarter waveplate, WP: Wollaston prism, BPD: balanced photodiode.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Discussion.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshikawa, N., Suganuma, H., Matsuoka, H. et al. Ultrafast switching to an insulating-like metastable state by amplitudon excitation of a charge density wave. Nat. Phys. 17, 909–914 (2021). https://doi.org/10.1038/s41567-021-01267-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing