Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topological Shiba bands in artificial spin chains on superconductors


A major challenge in developing topological superconductors for implementing topological quantum computing is their characterization and control. It has been proposed that a p-wave-gapped topological superconductor can be fabricated with single-atom precision by assembling chains of magnetic atoms on s-wave superconductors with spin–orbit coupling. Here we analyse Bogoliubov quasiparticle interference in Mn chains, constructed atom by atom on Nb(110), and reveal the formation of multi-orbital Shiba bands using momentum-resolved measurements. We find evidence that one band features a topologically non-trivial p-wave gap, as inferred from its shape and particle–hole asymmetric intensity. Our work is an important step towards a distinct experimental determination of topological phases in multi-orbital systems by bulk electron band structure properties only.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Multi-orbital YSR states of Mn atoms and construction of Mn chains.
Fig. 2: BdG quasiparticle interference patterns at the centre of the Mn chains.
Fig. 3: Two-dimensional maps of BdG quasiparticle interference patterns on Mn chains.
Fig. 4: Dispersion of multi-orbital BdG quasiparticle scattering vectors.

Data availability

Data that support the findings of this paper are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The analysis codes that support the findings of the study are available from the corresponding author upon reasonable request.


  1. 1.

    Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131–136 (2001).

    ADS  Article  Google Scholar 

  2. 2.

    Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    Zhang, H. et al. Quantized Majorana conductance. Nature 556, 74–79 (2018).

    ADS  Article  Google Scholar 

  4. 4.

    Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

    Article  Google Scholar 

  5. 5.

    Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb–InSb nanowire-Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Elliott, S. R. & Franz, M. Colloquium: Majorana fermions in nuclear, particle and solid-state physics. Rev. Mod. Phys. 87, 137 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    Pientka, F., Glazman, L. I. & von Oppen, F. Topological superconducting phase in helical Shiba chains. Phys. Rev. B 88, 155420 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Li, J. et al. Topological superconductivity induced by ferromagnetic metal chains. Phys. Rev. B 90, 235433 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407(R) (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Schecter, M., Flensberg, K., Christensen, M. H., Andersen, B. M. & Paaske, J. Self-organized topological superconductivity in a Yu–Shiba–Rusinov chain. Phys. Rev. B 93, 140503(R) (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Klinovaja, J., Stano, P., Yazdani, A. & Loss, D. Topological superconductivity and Majorana fermions in RKKY systems. Phys. Rev. Lett. 111, 186805 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Choy, T.-P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin–orbit coupling. Phys. Rev. B 84, 195442 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    Martin, I. & Morpurgo, A. F. Majorana fermions in superconducting helical magnets. Phys. Rev. B 85, 144505 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Feldman, B. E. et al. High-resolution studies of the Majorana atomic chain platform. Nat. Phys. 13, 286–291 (2017).

    Article  Google Scholar 

  19. 19.

    Pawlak, R. et al. Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface. npj Quantum Inf. 2, 16035 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Ruby, M. et al. End states and subgap structure in proximity-coupled chains of magnetic adatoms. Phys. Rev. Lett. 115, 197204 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Jeon, S. et al. Distinguishing a Majorana zero mode using spin-resolved measurements. Science 358, 772–776 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Ruby, M., Heinrich, B. W., Peng, Y., von Oppen, F. & Franke, K. J. Exploring a proximity-coupled Co chain on Pb(110) as a possible Majorana platform. Nano Lett. 17, 4473–4477 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Kim, H. et al. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors. Sci. Adv. 4, eaar5251 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Schneider, L. et al. Controlling in-gap end states by linking nonmagnetic atoms and artificially-constructed spin chains on superconductors. Nat. Commun. 11, 4707 (2020).

    ADS  Article  Google Scholar 

  25. 25.

    Yazdani, A., Jones, B. A., Lutz, C. P., Crommie, M. F. & Eigler, D. M. Probing the local effects of magnetic impurities on superconductivity. Science 275, 1767–1770 (1997).

    Article  Google Scholar 

  26. 26.

    Heinrich, B. W., Pascual, J. I. & Franke, K. J. Single magnetic adsorbates on s-wave superconductors. Prog. Surf. Sci. 93, 1–19 (2018).

    Article  Google Scholar 

  27. 27.

    Cornils, L. et al. Spin-resolved spectroscopy of the Yu–Shiba–Rusinov states of individual atoms. Phys. Rev. Lett. 119, 197002 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Balatsky, A. V., Vekhter, I. & Zhu, J.-X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

    ADS  Article  Google Scholar 

  29. 29.

    Franke, K. J., Schulze, G. & Pascual, J. I. Competition of superconducting phenomena and Kondo screening at the nanoscale. Science 332, 940–944 (2011).

    ADS  Article  Google Scholar 

  30. 30.

    Choi, D.-J. et al. Mapping the orbital structure of impurity bound states in a superconductor. Nat. Commun. 8, 15175 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Ruby, M., Peng, Y., von Oppen, F., Heinrich, B. W. & Franke, K. J. Orbital picture of Yu–Shiba–Rusinov multiplets. Phys. Rev. Lett. 117, 186801 (2016).

    ADS  Article  Google Scholar 

  32. 32.

    Crommie, M. F., Lutz, C. P. & Eigler, M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).

    Article  Google Scholar 

  33. 33.

    Hasegawa, Y. & Avouris, P. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 71, 1071–1074 (1993).

    ADS  Article  Google Scholar 

  34. 34.

    Hofmann, P. H. et al. Anisotropic two-dimensional Friedel oscillations. Phys. Rev. Lett. 79, 265–268 (1997).

    ADS  Article  Google Scholar 

  35. 35.

    Wittneven, C., Dombrowski, R., Morgenstern, M. & Wiesendanger, R. Scattering states of ionized dopants probed by low temperature scanning tunneling spectroscopy. Phys. Rev. Lett. 81, 5616 (1998).

    ADS  Article  Google Scholar 

  36. 36.

    Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ. Science 297, 1148–1151 (2002).

    ADS  Article  Google Scholar 

  37. 37.

    Derro, D. J. et al. Nanoscale one-dimensional scattering resonances in the CuO chains of YBa2Cu3O6 + δ. Phys. Rev. Lett. 88, 097002 (2002).

    ADS  Article  Google Scholar 

  38. 38.

    Hoffman, J. E. Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors. Rep. Prog. Phys. 74, 124513 (2011).

    ADS  Article  Google Scholar 

  39. 39.

    Schmidt, A. R. et al. Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2. Nature 465, 570–576 (2010).

    ADS  Article  Google Scholar 

  40. 40.

    Sessi, P. et al. Signatures of Dirac fermion-mediated magnetic order. Nat. Commun. 5, 5349 (2014).

    ADS  Article  Google Scholar 

  41. 41.

    Odobesko, A. B. et al. Preparation and electronic properties of clean superconducting Nb(110) surfaces. Phys. Rev. B 99, 115437 (2019).

    ADS  Article  Google Scholar 

  42. 42.

    Finnemore, D. K., Stromberg, T. F. & Swenson, C. A. Superconducting properties of high-purity niobium. Phys. Rev. 149, 231–243 (1966).

    ADS  Article  Google Scholar 

  43. 43.

    Wiebe, J. et al. A 300-mK ultra-high vacuum scanning tunneling microscope for spin-resolved spectroscopy at high energy resolution. Rev. Sci. Instrum. 75, 4871–4879 (2004).

    ADS  Article  Google Scholar 

  44. 44.

    Beck, P. et al. Spin–orbit coupling induced splitting of Yu–Shiba–Rusinov states in antiferromagnetic dimers. Nat. Commun. 12, 2040 (2021).

    ADS  Article  Google Scholar 

  45. 45.

    Pillet, J. D. et al. Andreev bound states in supercurrent-carrying carbon nanotubes revealed. Nat. Phys. 6, 965–969 (2010).

    Article  Google Scholar 

  46. 46.

    Schneider, L., Beck, P., Wiebe, J. & Wiesendanger, R. Atomic-scale spin-polarization maps using functionalized superconducting probes. Sci. Adv. 7, eabd7302 (2021).

    Article  Google Scholar 

  47. 47.

    Nilius, N., Wallis, T. H. & Ho, W. Development of one-dimensional band structure in artificial gold chains. Science 297, 1853–1856 (2002).

    ADS  Article  Google Scholar 

  48. 48.

    Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984).

    ADS  Article  Google Scholar 

  49. 49.

    Shanavas, K. V., Popović, Z. S. & Satpathy, S. Theoretical model for Rashba spin–orbit interaction in d electrons. Phys. Rev. B 90, 165108 (2014).

    ADS  Article  Google Scholar 

  50. 50.

    Peng, Y., Pientka, F., Glazman, L. I. & von Oppen, F. Strong localization of Majorana end states in chains of magnetic adatoms. Phys. Rev. Lett. 114, 106801 (2015).

    ADS  Article  Google Scholar 

  51. 51.

    Klinovaja, J. & Loss, D. Composite Majorana fermion wave functions in nanowires. Phys. Rev. B 86, 085408 (2012).

    ADS  Article  Google Scholar 

  52. 52.

    Baum, Y., Posske, T., Fulga, I. C., Trauzettel, B. & Stern, A. Coexisting edge states and gapless bulk in topological states of matter. Phys. Rev. Lett. 114, 136801 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  53. 53.

    Kjaergaard, M., Wölms, K. & Flensberg, K. Majorana fermions in superconducting nanowires without spin–orbit coupling. Phys. Rev. B 85, 020503(R) (2012).

    ADS  Article  Google Scholar 

  54. 54.

    von Oppen, F., Peng, Y. & Pientka, F. in Topological Aspects of Condensed Matter Physics: Lecture Notes of the Les Houghes Summer School (eds Chamon, C. et al.) Ch. 9 (Oxford Univ. Press, 2017).

Download references


L.S., P.B., T.P., J.W. and R.W. gratefully acknowledge funding by the Cluster of Excellence ‘Advanced Imaging of Matter’ (EXC 2056—project ID 390715994) of the Deutsche Forschungsgemeinschaft (DFG). L.S., P.B., J.W. and R.W. acknowledge support by the SFB 925–B9 ‘Light induced dynamics and control of correlated quantum systems’ of the Deutsche Forschungsgemeinschaft (DFG). T.P. acknowledges support by the DFG (project no. 420120155). R.W. acknowledges funding by the European Union via ERC Advanced Grant ADMIRE (project no. 786020). S.R. acknowledges support from the Australian Research Council (DP200101118). We thank D. K. Morr, H. Jeschke and L. Rózsa for helpful discussions. T.P. thanks F. Pientka for clarifying remarks.

Author information




L.S., P.B., R.W. and J.W. conceived the experiments. L.S. and P.B. performed the measurements and analysed the experimental data together with J.W. T.P. derived the effective low-energy Shiba model. L.S. performed the numerical simulations using the effective low-energy Shiba model and the fitting to the experimental data. D.C., E.M. and S.R. performed numerical simulations, which were essential for the understanding of the system. L.S. prepared the figures. L.S. and J.W. wrote the manuscript. All authors contributed to the discussions and to correcting the manuscript.

Corresponding author

Correspondence to Jens Wiebe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Yukio Hasegawa and Jose Pascual for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, details of the experimental procedures, the QPI analysis and the theoretical model.

Source data

Source Data Fig. 1

Source data Fig 1.

Source Data Fig. 2

Source data Fig 2.

Source Data Fig. 3

Source data Fig 3.

Source Data Fig. 4

Source data Fig 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schneider, L., Beck, P., Posske, T. et al. Topological Shiba bands in artificial spin chains on superconductors. Nat. Phys. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing