Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Competition and interplay between topology and quasi-periodic disorder in Thouless pumping of ultracold atoms

Abstract

Robustness against perturbations lies at the heart of topological phenomena. If, however, a perturbation such as disorder becomes dominant, it may cause a topological phase transition between topologically non-trivial and trivial phases. Here we experimentally reveal the competition and interplay between topology and quasi-periodic disorder in a Thouless pump realized with ultracold atoms in an optical lattice, by creating a quasi-periodic potential from weak to strong regimes in a controllable manner. We demonstrate a disorder-induced pumping in which the presence of quasi-periodic disorder can induce a non-trivial pump for a specific pumping sequence, whereas no pump is observed in the clean limit. Our highly controllable system, which can also straightforwardly incorporate interatomic interaction, could be a unique platform for studying various disorder-related effects in a wide range of topological quantum phenomena.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Rice–Mele model.
Fig. 2: Breakdown of Thouless pump under quasi-periodic disorder.
Fig. 3: Gap closing and opening induced by quasi-periodic disorder.
Fig. 4: Disorder-induced pumping.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes used for the numerical simulations within this paper are available from the corresponding author upon reasonable request.

References

  1. Lagendijk, A., van Tiggelen, B. & Wiersma, D. S. Fifty years of Anderson localization. Phys. Today 62, 24–29 (2009).

    Google Scholar 

  2. Niu, Q. & Thouless, D. J. Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J. Phys. A 17, 2453–2462 (1984).

    ADS  MathSciNet  MATH  Google Scholar 

  3. Niu, Q., Thouless, D. J. & Wu, Y.-S. Quantized Hall conductance as a topological invariant. Phys. Rev. B 31, 3372–3377 (1985).

    ADS  MathSciNet  Google Scholar 

  4. Kobayashi, K., Ohtsuki, T. & Imura, K.-I. Disordered weak and strong topological insulators. Phys. Rev. Lett. 110, 236803 (2013).

    ADS  Google Scholar 

  5. Leung, B. & Prodan, E. Effect of strong disorder in a three-dimensional topological insulator: phase diagram and maps of the \({{\mathbb{Z}}}_{2}\) invariant. Phys. Rev. B 85, 205136 (2012).

    ADS  Google Scholar 

  6. Yamakage, A., Nomura, K., Imura, K.-I. & Kuramoto, Y. Disorder-induced multiple transition involving \({{\mathbb{Z}}}_{2}\) topological insulator. J. Phys. Soc. Jpn 80, 053703 (2011).

    ADS  Google Scholar 

  7. Li, J., Chu, R.-L., Jain, J. K. & Shen, S.-Q. Topological Anderson insulator. Phys. Rev. Lett. 102, 136806 (2009).

    ADS  Google Scholar 

  8. McGinley, M., Knolle, J. & Nunnenkamp, A. Robustness of Majorana edge modes and topological order: exact results for the symmetric interacting Kitaev chain with disorder. Phys. Rev. B 96, 241113 (2017).

    ADS  Google Scholar 

  9. Shen, S.-Q. Topological Insulators: Dirac Equation in Condensed Matters 2nd edn (Springer, 2017).

  10. Meier, E. J. et al. Observation of the topological Anderson insulator in disordered atomic wires. Science 362, 929–933 (2018).

    ADS  Google Scholar 

  11. Stützer, S. et al. Photonic topological Anderson insulators. Nature 560, 461–465 (2018).

    ADS  Google Scholar 

  12. Li, G.-G. et al. Topological Anderson insulator in disordered photonic crystals. Phys. Rev. Lett. 125, 133603 (2020).

    ADS  Google Scholar 

  13. Titum, P., Berg, E., Rudner, M. S., Refael, G. & Lindner, N. H. Anomalous Floquet–Anderson insulator as a nonadiabatic quantized charge pump. Phys. Rev. X 6, 021013 (2016).

    Google Scholar 

  14. Sriluckshmy, P. V., Saha, K. & Moessner, R. Interplay between topology and disorder in a two-dimensional semi-Dirac material. Phys. Rev. B 97, 024204 (2018).

    ADS  Google Scholar 

  15. Mondragon-Shem, I. & Hughes, T. L. Signatures of metal-insulator and topological phase transitions in the entanglement of one-dimensional disordered fermions. Phys. Rev. B 90, 104204 (2014).

    ADS  Google Scholar 

  16. Thouless, D. J. Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).

    ADS  MathSciNet  Google Scholar 

  17. Nakajima, S. et al. Topological Thouless pumping of ultracold fermions. Nat. Phys. 12, 296–300 (2016).

    Google Scholar 

  18. Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nat. Phys. 12, 350–354 (2016).

    Google Scholar 

  19. Schweizer, C., Lohse, M., Citro, R. & Bloch, I. Spin pumping and measurement of spin currents in optical superlattices. Phys. Rev. Lett. 117, 170405 (2016).

    ADS  Google Scholar 

  20. Lohse, M., Schweizer, C., Price, H. M., Zilberberg, O. & Bloch, I. Exploring 4D quantum Hall physics with a 2D topological charge pump. Nature 553, 55–58 (2018).

    ADS  Google Scholar 

  21. Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    ADS  Google Scholar 

  22. Zilberberg, O. et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature 553, 59–62 (2018).

    ADS  Google Scholar 

  23. Qin, J. & Guo, H. Quantum pumping induced by disorder in one dimension. Phys. Lett. A 380, 2317–2321 (2016).

    ADS  Google Scholar 

  24. Wauters, M. M., Russomanno, A., Citro, R., Santoro, G. E. & Privitera, L. Localization, topology, and quantized transport in disordered Floquet systems. Phys. Rev. Lett. 123, 266601 (2019).

    ADS  Google Scholar 

  25. Imura, K.-I., Yoshimura, Y., Fukui, T. & Hatsugai, Y. Bulk-edge correspondence in topological transport and pumping. J. Phys. Conf. Ser. 969, 012133 (2018).

    Google Scholar 

  26. Kuno, Y. Disorder-induced Chern insulator in the Harper–Hofstadter–Hatsugai model. Phys. Rev. B 100, 054108 (2019).

    ADS  Google Scholar 

  27. Nakagawa, M., Yoshida, T., Peters, R. & Kawakami, N. Breakdown of topological Thouless pumping in the strongly interacting regime. Phys. Rev. B 98, 115147 (2018).

    ADS  Google Scholar 

  28. Hayward, A., Schweizer, C., Lohse, M., Aidelsburger, M. & Heidrich-Meisner, F. Topological charge pumping in the interacting bosonic Rice–Mele model. Phys. Rev. B 98, 245148 (2018).

    ADS  Google Scholar 

  29. Stenzel, L., Hayward, A. L. C., Hubig, C., Schollwöck, U. & Heidrich-Meisner, F. Quantum phases and topological properties of interacting fermions in one-dimensional superlattices. Phys. Rev. A 99, 053614 (2019).

    ADS  Google Scholar 

  30. Mei, F., Chen, G., Goldman, N., Xiao, L. & Jia, S. Topological magnon insulator and quantized pumps from strongly-interacting bosons in optical superlattices. New J. Phys. 21, 095002 (2019).

    ADS  Google Scholar 

  31. Rice, M. J. & Mele, E. J. Elementary excitations of a linearly conjugated diatomic polymer. Phys. Rev. Lett. 49, 1455–1459 (1982).

    ADS  Google Scholar 

  32. Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795–800 (2013).

    Google Scholar 

  33. Hayward, A. L. C., Bertok, E., Schneider, U. & Heidrich-Meisner, F. Effect of disorder on topological charge pumping in the Rice–Mele model. Preprint at http://arxiv.org/abs/2010.15249 (2020).

  34. Asbóth, J. K., Oroszlány, L. & Pályi, A. A Short Course on Topological Insulators Vol. 919 (Springer, 2016).

  35. Zhang, Y.-F. et al. Coupling-matrix approach to the Chern number calculation in disordered systems. Chin. Phys. B 22, 117312 (2013).

    ADS  Google Scholar 

  36. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    ADS  Google Scholar 

  37. Das, K. K. & Christ, J. Realizing the Harper model with ultracold atoms in a ring lattice. Phys. Rev. A 99, 013604 (2019).

    ADS  Google Scholar 

  38. Marra, P. & Nitta, M. Topologically quantized current in quasiperiodic Thouless pumps. Phys. Rev. Res. 2, 042035 (2020).

    Google Scholar 

  39. Aubry, S. & André, G. Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc. 3, 133–164 (1980).

    MathSciNet  MATH  Google Scholar 

  40. Huse, D. A., Nandkishore, R., Oganesyan, V., Pal, A. & Sondhi, S. L. Localization-protected quantum order. Phys. Rev. B 88, 014206 (2013).

    ADS  Google Scholar 

  41. Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    ADS  Google Scholar 

  42. Price, H. M., Zilberberg, O., Ozawa, T., Carusotto, I. & Goldman, N. Four-dimensional quantum Hall effect with ultracold atoms. Phys. Rev. Lett. 115, 195303 (2015).

    ADS  Google Scholar 

  43. Ippoliti, M. & Bhatt, R. N. Dimensional crossover of the integer quantum Hall plateau transition and disordered topological pumping. Phys. Rev. Lett. 124, 086602 (2020).

    ADS  Google Scholar 

  44. Privitera, L., Russomanno, A., Citro, R. & Santoro, G. E. Nonadiabatic breaking of topological pumping. Phys. Rev. Lett. 120, 106601 (2018).

    ADS  Google Scholar 

  45. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  46. Xie, B.-Y. et al. Second-order photonic topological insulator with corner states. Phys. Rev. B 98, 205147 (2018).

    ADS  Google Scholar 

  47. Li, C.-A., Fu, B., Hu, Z.-A., Li, J. & Shen, S.-Q. Topological phase transitions in disordered electric quadrupole insulators. Phys. Rev. Lett. 125, 166801 (2020).

    ADS  MathSciNet  Google Scholar 

  48. Araki, H., Mizoguchi, T. & Hatsugai, Y. Phase diagram of a disordered higher-order topological insulator: a machine learning study. Phys. Rev. B 99, 085406 (2019).

    ADS  Google Scholar 

  49. Kitagawa, M. et al. Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of s-wave scattering lengths. Phys. Rev. A 77, 012719 (2008).

    ADS  Google Scholar 

  50. Taie, S. et al. Realization of a SU(2) × SU(6) system of fermions in a cold atomic gas. Phys. Rev. Lett. 105, 190401 (2010).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Aoki, Y. Hatsugai and K. Imura for valuable discussions and A. Sawada for experimental assistance. This work was supported by Grants-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (JSPS) (grant nos. JP25220711, JP26247064, JP16H00990, JP16H01053, JP17H06138, JP18H05405, JP18H05228 and JP18K13480), the Impulsing Paradigm Change through Disruptive Technologies (ImPACT) programme, the CREST programme of the Japan Science and Technology Agency (grant no. JPMJCR1673) and the Quantum Leap Flagship Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT Q-LEAP) (grant no. JPMXS0118069021). Y.K. acknowledges the support of a Grant-in-Aid for JSPS Fellows (grant no. 17J00486). P.M. is supported by the JST (CREST grant. no. JPMJCR19T2), by the MEXT-supported Program for the Strategic Research Foundation at Private Universities Topological Science (grant no. S1511006) and by a JSPS Grant-in-Aid for Early-Career Scientists (grant no. 20K14375).

Author information

Authors and Affiliations

Authors

Contributions

S.N., N.T. and K.S. carried out experiments and the data analysis. Y.K. and P.M. carried out the theoretical calculation. Y.T. conducted the whole experiment. All the authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Shuta Nakajima.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakajima, S., Takei, N., Sakuma, K. et al. Competition and interplay between topology and quasi-periodic disorder in Thouless pumping of ultracold atoms. Nat. Phys. 17, 844–849 (2021). https://doi.org/10.1038/s41567-021-01229-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01229-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing