Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4

Abstract

Sr2RuO4 has stood as the leading candidate for a spin-triplet superconductor for 26 years1. However, recent NMR experiments have cast doubt on this candidacy2,3 and it is difficult to find a theory of superconductivity that is consistent with all experiments. The order parameter symmetry for this material therefore remains an open question. Symmetry-based experiments are needed that can rule out broad classes of possible superconducting order parameters. Here, we use resonant ultrasound spectroscopy to measure the entire symmetry-resolved elastic tensor of Sr2RuO4 through the superconducting transition. We observe a thermodynamic discontinuity in the shear elastic modulus c66, which implies that the superconducting order parameter has two components. A two-component p-wave order parameter, such as px + ipy, naturally satisfies this requirement. As this order parameter appears to have been precluded by recent NMR experiments, we suggest that two other two-component order parameters, namely \(\{{d}_{xz},{d}_{yz}\}\) and \(\{{d}_{{x}^{2}-{y}^{2}},{g}_{xy({x}^{2}-{y}^{2})}\}\), are now the prime candidates for the order parameter of Sr2RuO4.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Irreducible strains in Sr2RuO4 and their coupling to superconducting order parameters.
Fig. 2: Resonant ultrasound spectroscopy: schematic and spectrum.
Fig. 3: Resonant ultrasound spectroscopy across Tc in Sr2RuO4.

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994).

    ADS  Article  Google Scholar 

  2. 2.

    Pustogow, A. et al. Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance. Nature 574, 72–75 (2019).

    ADS  Article  Google Scholar 

  3. 3.

    Ishida, K., Manago, M., Kinjo, K. & Maeno, Y. Reduction of the 17O Knight shift in the superconducting state and the heat-up effect by NMR pulses on Sr2RuO4. J. Phys. Soc. Jpn 89, 034712 (2020).

    ADS  Article  Google Scholar 

  4. 4.

    Rice, T. M. & Sigrist, M. Sr2RuO4: an electronic analogue of 3He? J. Phys. Condens. Matter 7, L643–L648 (1995).

    ADS  Article  Google Scholar 

  5. 5.

    Baskaran, G. Why is Sr2RuO4 not a high Tc superconductor? Electron correlation, Hund’s coupling and p-wave instability. Physica B Condens. Matter 223, 490–495 (1996).

    ADS  Article  Google Scholar 

  6. 6.

    Bergemann, C., Julian, S. R., Mackenzie, A. P., Nishizaki, S. & Maeno, Y. Detailed topography of the Fermi surface of Sr2RuO4. Phys. Rev. Lett. 84, 2662–2665 (2000).

    ADS  Article  Google Scholar 

  7. 7.

    Mackenzie, A. P., Scaffidi, T., Hicks, C. W. & Maeno, Y. Even odder after twenty-three years: the superconducting order parameter puzzle of Sr2RuO4. npj Quantum Mater. 2, 40 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    Ishida, K. et al. Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift. Nature 396, 658–660 (1998).

    ADS  Article  Google Scholar 

  9. 9.

    Kittaka, S. et al. Angular dependence of the upper critical field of Sr2RuO4. Phys. Rev. B 80, 174514 (2009).

    ADS  Article  Google Scholar 

  10. 10.

    Luke, G. M. et al. Time-reversal symmetry-breaking superconductivity in Sr2RuO4. Nature 394, 558–561 (1998).

    ADS  Article  Google Scholar 

  11. 11.

    Xia, J., Maeno, Y., Beyersdorf, P. T., Fejer, M. M. & Kapitulnik, A. High resolution polar Kerr effect measurements of Sr2RuO4: evidence for broken time-reversal symmetry in the superconducting state. Phys. Rev. Lett. 97, 167002 (2006).

    ADS  Article  Google Scholar 

  12. 12.

    Jang, J. et al. Observation of half-height magnetization steps in Sr2RuO4. Science 331, 186–188 (2011).

    ADS  Article  Google Scholar 

  13. 13.

    Ghosh, S. et al. One-component order parameter in URu2Si2 uncovered by resonant ultrasound spectroscopy and machine learning. Sci. Adv. 6, eaaz4074 (2020).

    ADS  Article  Google Scholar 

  14. 14.

    Okuda, N., Suzuki, T., Mao, Z., Maeno, Y. & Fujita, T. Unconventional strain dependence of superconductivity in spin-triplet superconductor Sr2RuO4. J. Phys. Soc. Jpn 71, 1134–1139 (2002).

    ADS  Article  Google Scholar 

  15. 15.

    Lupien, C. Ultrasound attenuation in the unconventional superconductor Sr2RuO4. PhD thesis, Univ. of Toronto (2002).

  16. 16.

    Benhabib, S. et al. Ultrasound evidence for a two-component superconducting order parameter in Sr2RuO4. Nat. Phys. https://doi.org/10.1038/s41567-020-1033-3 (2020).

  17. 17.

    Walker, M. B. & Contreras, P. Theory of elastic properties of Sr2RuO4 at the superconducting transition temperature. Phys. Rev. B 66, 214508 (2002).

    ADS  Article  Google Scholar 

  18. 18.

    Migliori, A. et al. Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Physica B Condens. Matter 183, 1–24 (1993).

    ADS  Article  Google Scholar 

  19. 19.

    Ramshaw, B. J. et al. Avoided valence transition in a plutonium superconductor. Proc. Natl Acad. Sci. 112, 3285–3289 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Forsythe, D. et al. Evolution of Fermi-liquid interactions in Sr2RuO4 under pressure. Phys. Rev. Lett. 89, 166402 (2002).

    ADS  Article  Google Scholar 

  21. 21.

    Grinenko, V. et al. Split superconducting and time-reversal symmetry-breaking transitions, and magnetic order in Sr2RuO4 under uniaxial stress. Preprint at https://arxiv.org/abs/2001.08152v2 (2020).

  22. 22.

    Hicks, C. W. et al. Strong increase of Tc of Sr2RuO4 under both tensile and compressive strain. Science 344, 283–285 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    Li, Y.-S. High sensitivity heat capacity measurements on Sr2RuO4 under uniaxial pressure. Preprint at https://arxiv.org/abs/1906.07597 (2020).

  24. 24.

    Watson, C. A., Gibbs, A. S., Mackenzie, A. P., Hicks, C. W. & Moler, K. A. Micron-scale measurements of low anisotropic strain response of local Tc in Sr2RuO4. Phys. Rev. B 98, 094521 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Hassinger, E. et al. Vertical line nodes in the superconducting gap structure of Sr2RuO4. Phys. Rev. X 7, 011032 (2017).

    Google Scholar 

  26. 26.

    Sharma, R. et al. Momentum-resolved superconducting energy gaps of Sr2RuO4 from quasiparticle interference imaging. Proc. Natl Acad. Sci. 117, 5222–5227 (2020).

    ADS  Article  Google Scholar 

  27. 27.

    Rømer, A. T., Scherer, D. D., Eremin, I. M., Hirschfeld, P. J. & Andersen, B. M. Knight shift and leading superconducting instability from spin fluctuations in Sr2RuO4. Phys. Rev. Lett. 123, 247001 (2019).

    ADS  Article  Google Scholar 

  28. 28.

    Lupien, C. & et al. Ultrasound attenuation in Sr2RuO4: an angle-resolved study of the superconducting gap function. Phys. Rev. Lett. 86, 5986–5989 (2001).

    ADS  Article  Google Scholar 

  29. 29.

    Žutić, I. & Mazin, I. Phase-sensitive tests of the pairing state symmetry in Sr2RuO4. Phys. Rev. Lett. 95, 217004 (2005).

    ADS  Article  Google Scholar 

  30. 30.

    Kittaka, S. et al. Searching for gap zeros in Sr2RuO4 via field-angle-dependent specific-heat measurement. J. Phys. Soc. Jpn 87, 093703 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    Ramires, A. & Sigrist, M. Superconducting order parameter of Sr2RuO4: a microscopic perspective. Phys. Rev. B 100, 104501 (2019).

    ADS  Article  Google Scholar 

  32. 32.

    Suh, H. G. et al. Stabilizing even-parity chiral superconductivity in Sr2RuO4. Phys. Rev. Res. 2, 032023 (2020).

    Article  Google Scholar 

  33. 33.

    Haverkort, M. W., Elfimov, I. S., Tjeng, L. H., Sawatzky, G. A. & Damascelli, A. Strong spin-orbit coupling effects on the Fermi surface of Sr2RuO4 and Sr2RhO4. Phys. Rev. Lett. 101, 026406 (2008).

    ADS  Article  Google Scholar 

  34. 34.

    Tamai, A. et al. High-resolution photoemission on Sr2RuO4 reveals correlation-enhanced effective spin-orbit coupling and dominantly local self-energies. Phys. Rev. X 9, 021048 (2019).

    Google Scholar 

  35. 35.

    Kivelson, S. A., Yuan, A. C., Ramshaw, B. J. & Thomale, R. A proposal for reconciling diverse experiments on the superconducting state in Sr2RuO4. npj Quantum Mater. 5, 43 (2020).

    ADS  Article  Google Scholar 

  36. 36.

    Raghu, S., Berg, E., Chubukov, A. V. & Kivelson, S. A. Effects of longer-range interactions on unconventional superconductivity. Phys. Rev. B 85, 024516 (2012).

    ADS  Article  Google Scholar 

  37. 37.

    Bobowski, J. S. et al. Improved single-crystal growth of Sr2RuO4. Condens. Matter 4, 6 (2019).

    Article  Google Scholar 

  38. 38.

    Mackenzie, A. P. et al. Extremely strong dependence of superconductivity on disorder in Sr2RuO4. Phys. Rev. Lett. 80, 161–164 (1998).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with K. Modic, S. Kivelson, I. Mazin, D. Agterberg, R. Thomale, P. Hirschfeld, R. Fernandes, I. Paul, C. Proust and L. Taillefer. B.J.R. and S.G. are grateful for help with the experimental design from E. Smith and J. Parpia, and from the machine shop staff of the Laboratory of Atomic and Solid State Physics at Cornell University. B.J.R and S.G. acknowledge support for building the experiment, collecting and analysing the data, and writing the manuscript from the Office of Basic Energy Sciences of the United States Department of Energy under award no. DE-SC0020143. B.J.R. and S.G. acknowledge support from the Cornell Center for Materials Research with funding from the Materials Research Science and Engineering Centers program of the National Science Foundation (cooperative agreement no. DMR-1719875). A.S. acknowledges support from the National High Magnetic Field Laboratory, which is supported by the National Science Foundation (cooperative agreement no. DMR-1644779) and the State of Florida. N.K. acknowledges support from KAKENHI (Grants-in-Aid for Scientific Research, grant no. JP18K04715) of the Japan Society for the Promotion of Science.

Author information

Affiliations

Authors

Contributions

S.G. and B.J.R. designed the experiment. F.J., D.A.S., N.K., M.B., C.W.H. and A.P.M. prepared the crystal and performed characterization measurements. S.G. acquired and analysed the ultrasound data. S.G., A.S., C.W.H. and B.J.R. wrote the manuscript with input from all co-authors.

Corresponding author

Correspondence to B. J. Ramshaw.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Johnpierre Paglione and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 RUS frequency data.

Temperature evolution of 18 resonance frequencies of Sr2RuO4 through Tc, with panels (a) and (b) each showing 9 frequencies. Plots are vertically shifted for visual clarity.

Source data

Extended Data Fig. 2 Characterization of the Sr2RuO4 rod.

(a) Specific heat and (b) susceptibility measurements of the upper critical field, measured on different parts of the same rod from which the sample for RUS experiment was obtained. Tc varies by about 200 mK between different parts of the rod.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Table 1 and Discussion.

Source data

Source Data Fig. 2

Ultrasound spectra raw data.

Source Data Fig. 3

Temperature dependence of RUS frequencies and elastic moduli.

Source Data Extended Data Fig. 1

RUS frequencies data through superconducting transition.

Source Data Extended Data Fig. 2

Specific heat and critical field data on Sr2RuO4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Shekhter, A., Jerzembeck, F. et al. Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4. Nat. Phys. 17, 199–204 (2021). https://doi.org/10.1038/s41567-020-1032-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing