Isotopy and energy of physical networks

Abstract

While the structural characteristics of a network are uniquely determined by its adjacency matrix1,2,3, in physical networks, such as the brain or the vascular system, the network’s three-dimensional layout also affects the system’s structure and function. We lack, however, the tools to distinguish physical networks with identical wiring but different geometrical layouts. To address this need, here we introduce the concept of network isotopy, representing different network layouts that can be transformed into one another without link crossings, and show that a single quantity, the graph linking number, captures the entangledness of a layout, defining distinct isotopy classes. We find that a network’s elastic energy depends linearly on the graph linking number, indicating that each local tangle offers an independent contribution to the total energy. This finding allows us to formulate a statistical model for the formation of tangles in physical networks. We apply the developed framework to a diverse set of real physical networks, finding that the mouse connectome is more entangled than expected based on optimal wiring.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Graph linking number.
Fig. 2: Energy and GLN.
Fig. 3: Statistical physics of physical networks.
Fig. 4: Modelling brain layout.

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

Code is available for this paper at https://github.com/YanchenLiu1/GLN. All other code that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Cohen, R. & Havlin, S. Complex Networks: Structure, Robustness and Function (Cambridge Univ. Press, 2010).

  2. 2.

    Caldarelli, G. Scale-free Networks: Complex Webs in Nature and Technology (Oxford Univ. Press, 2007).

  3. 3.

    Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275–1335 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Song, C., Wang, P. & Makse, H. A. A phase diagram for jammed matter. Nature 453, 629–632 (2008).

    ADS  Article  Google Scholar 

  5. 5.

    Barthélemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Barrat, A., Barthelemy, M. & Vespignani, A. Dynamical Processes on Complex Networks (Cambridge Univ. Press, 2008).

  7. 7.

    Whitney, H. Collected Papers of Hassler Whitney (Nelson Thornes, 1992).

  8. 8.

    Armstrong, M. A. Basic Topology (Springer Science & Business Media, 2013).

  9. 9.

    Gauss, C. F. in Zur Mathematischen Theorie der Electrodynamische Wirkungen Collected Works, Vol. 5, 605 (Koniglichen Gesellschaft des Wissenschaften, 1833).

  10. 10.

    Kauffman, L. Knots and Physics, Series on Knots and Everything 1 (World Scientific, 1991).

  11. 11.

    Bianconi, G. & Capocci, A. Number of loops of size h in growing scale-free networks. Phys. Rev. Lett. 90, 078701 (2003).

    ADS  Article  Google Scholar 

  12. 12.

    Viana, M. P. et al. Mitochondrial fission and fusion dynamics generate efficient, robust, and evenly distributed network topologies in budding yeast cells. Cell Syst. 10, 287–297 (2020).

    Article  Google Scholar 

  13. 13.

    Gagnon, L. et al. Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe. J. Neurosci. 35, 3663–3675 (2015).

    Article  Google Scholar 

  14. 14.

    Cook, S. J. et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 571, 63–71 (2019).

    ADS  Article  Google Scholar 

  15. 15.

    Xu, C. S. et al. A connectome of the adult Drosophila central brain. Preprint at https://doi.org/10.1101/2020.01.21.911859 (2020).

  16. 16.

    Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    ADS  Article  Google Scholar 

  17. 17.

    Dehmamy, N., Milanlouei, S. & Barabási, A.-L. A structural transition in physical networks. Nature 563, 676–680 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Dubrovin, B., Fomenko, A. & Novikov, S. Modern Geometry Methods and Applications. Part 1: The Geometry and Topology of Manifolds (trans. Burns, R. G.) (Graduate Texts in Mathematics 104, Springer-Verlag, 1984).

  19. 19.

    Mézard, M. & Parisi, G. Replica field theory for random manifolds. J. Phys. I 1, 809–836 (1991).

    Google Scholar 

  20. 20.

    Parisi, G. The physical meaning of replica symmetry breaking. Preprint at https://arxiv.org/abs/cond-mat/0205387 (2002).

  21. 21.

    Fraenkel, A. S. Complexity of protein folding. Bull. Math. Biol. 55, 1199–1210 (1993).

    Article  Google Scholar 

  22. 22.

    Ngo, J. T., Marks, J. & Karplus, M. in The Protein Folding Problem and Tertiary Structure Prediction (eds Merz K. M. & Le Grand S. M.) 433–506 (Springer, 1994).

  23. 23.

    Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).

    Article  Google Scholar 

  24. 24.

    Kubicki, M., McCarley, R. W. & Shenton, M. E. Evidence for white matter abnormalities in schizophrenia. Curr. Opin. Psychiatry 18, 121 (2005).

    Article  Google Scholar 

  25. 25.

    Zalesky, A. et al. Disrupted axonal fiber connectivity in schizophrenia. Biol. Psychiatry 69, 80–89 (2011).

    Article  Google Scholar 

  26. 26.

    Del Ferraro, G. et al. Finding influential nodes for integration in brain networks using optimal percolation theory. Nat. Commun. 9, 2274 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    Smaldino, P. E., D’Souza, R. M. & Maoz, Z. Resilience by structural entrenchment: dynamics of single-layer and multiplex networks following sudden changes to tie costs. Netw. Sci. 6, 157–175 (2018).

    Article  Google Scholar 

  28. 28.

    Cornelius, S. P., Kath, W. L. & Motter, A. E. Realistic control of network dynamics. Nat. Commun. 4, 1942 (2013).

    ADS  Article  Google Scholar 

  29. 29.

    Hens, C., Harush, U., Haber, S., Cohen, R. & Barzel, B. Spatiotemporal signal propagation in complex networks. Nat. Phys. 15, 403–412 (2019).

    Article  Google Scholar 

  30. 30.

    Erdős, P. & Rényi, A. On Random Graphs I (Publicationes Mathematicae, 1959).

  31. 31.

    Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  32. 32.

    Ahn, Y.-Y., Ahnert, S. E., Bagrow, J. P. & Barabási, A.-L. Flavor network and the principles of food pairing. Sci. Rep. 1, 196 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. A. Brum and E. Towlson for useful discussions and for providing the processed Allen Institute mouse brain data, S. Cook for providing the C. elegans data, M. Viana for providing the mitochondrial network data and A. Grishchenko for 3D and data visualizations. We were supported by grants from the NSF (grant nos. 1735505 and 1734821), ERC (grant no. 810115 - DYNASNET) and John Templeton Foundation (grant no. 61006). N.D. was also supported by the Office of Naval Research (grant no. 00014-18-9-001).

Author information

Affiliations

Authors

Contributions

Y.L. performed the mathematical modelling, developed the algorithm, ran and analysed the simulations, generated the figures, and contributed to writing the manuscript. N.D. contributed to the mathematical modelling, running the simulations and writing the manuscript. A.-L.B. contributed to the conceptual design of the study and was the lead writer of the manuscript.

Corresponding author

Correspondence to Albert-László Barabási.

Ethics declarations

Competing interests

A.-L.B. is the founder of Scipher, Nomix and Foodome that bring network tools to health science.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, discussion and Table 1.

Source data

Source data Fig. 2

Statistical data for Fig. 2c–f.

Source data Fig. 3

Statistical data for Fig. 3c,d.

Source data Fig. 4

Statistical data for Fig. 4c,d.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Dehmamy, N. & Barabási, AL. Isotopy and energy of physical networks. Nat. Phys. (2020). https://doi.org/10.1038/s41567-020-1029-z

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing