Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scale-invariant magnetic anisotropy in RuCl3 at high magnetic fields

Abstract

In RuCl3, inelastic neutron scattering and Raman spectroscopy reveal a continuum of non-spin-wave excitations that persists to high temperature, suggesting the presence of a spin liquid state on a honeycomb lattice. In the context of the Kitaev model, finite magnetic fields introduce interactions between the elementary excitations, and thus the effects of high magnetic fields that are comparable to the spin-exchange energy scale must be explored. Here, we report measurements of the magnetotropic coefficient—the thermodynamic coefficient associated with magnetic anisotropy—over a wide range of magnetic fields and temperatures. We find that magnetic field and temperature compete to determine the magnetic response in a way that is independent of the large intrinsic exchange-interaction energy. This emergent scale-invariant magnetic anisotropy provides evidence for a high degree of exchange frustration that favours the formation of a spin liquid state in RuCl3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The anisotropic AFM phase boundary.
Fig. 2: Saturation of the magnetic anisotropy above Bc.
Fig. 3: Temperature–magnetic field scaling of the magnetotropic coefficient.
Fig. 4: Angle dependence of the magnetotropic coefficient.

Similar content being viewed by others

Data availability

All data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  2. Kasahara, Y. et al. Unusual thermal Hall effect in a Kitaev spin liquid candidate α-RuCl3. Phys. Rev. Lett. 120, 217205 (2018).

    Article  ADS  Google Scholar 

  3. Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).

    Article  ADS  Google Scholar 

  4. Sears, J. A., Zhao, Y., Xu, Z., Lynn, J. W. & Kim, Y.-J. Phase diagram of α-RuCl3 in an in-plane magnetic field. Phys. Rev. B 95, 180411 (2017).

    Article  ADS  Google Scholar 

  5. Wolter, A. U. B. et al. Field-induced quantum criticality in the Kitaev system α-RuCl3. Phys. Rev. B 96, 041405 (2017).

    Article  ADS  Google Scholar 

  6. Sandilands, L. J., Tian, Y., Plumb, K. W., Kim, Y.-J. & Burch, K. S. Scattering continuum and possible fractionalized excitations in α-RuCl3. Phys. Rev. Lett. 114, 147201 (2015).

    Article  ADS  Google Scholar 

  7. Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).

    Article  ADS  Google Scholar 

  8. Banerjee, A. et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science 356, 1055–1059 (2017).

    Article  ADS  Google Scholar 

  9. Baek, S.-H. et al. Evidence for a field-induced quantum spin liquid in α-RuCl3. Phys. Rev. Lett. 119, 037201 (2017).

    Article  ADS  Google Scholar 

  10. Wang, Z. et al. Magnetic excitations and continuum of a possibly field-induced quantum spin liquid in α-RuCl3. Phys. Rev. Lett. 119, 227202 (2017).

    Article  ADS  Google Scholar 

  11. Ponomaryov, A. N. et al. Unconventional spin dynamics in the honeycomb-lattice material α-RuCl3: high-field electron spin resonance studies. Phys. Rev. B 96, 241107 (2017).

    Article  ADS  Google Scholar 

  12. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin–orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    Article  ADS  Google Scholar 

  13. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).

    Article  ADS  Google Scholar 

  14. Modic, K. A. et al. Realization of a three-dimensional spin-anisotropic harmonic honeycomb iridate. Nat. Commun. 5, 4203 (2014).

    Article  ADS  Google Scholar 

  15. Chun, S. H. et al. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3. Nat. Phys. 11, 462–466 (2015).

    Article  Google Scholar 

  16. Majumder, M. et al. Anisotropic Ru3+ 4d5 magnetism in the α-RuCl3 honeycomb system: susceptibility, specific heat, and zero-field NMR. Phys. Rev. B 91, 180401 (2015).

    Article  ADS  Google Scholar 

  17. Kimchi, I., Analytis, J. G. & Vishwanath, A. Three-dimensional quantum spin liquids in models of harmonic-honeycomb iridates and phase diagram in an infinite-D approximation. Phys. Rev. B 90, 205126 (2014).

    Article  ADS  Google Scholar 

  18. Chaloupka, J., Jackeli, G. & Khaliullin, G. Zigzag magnetic order in the iridium oxide Na2IrO3. Phys. Rev. Lett. 110, 097204 (2013).

    Article  ADS  Google Scholar 

  19. Das, S. D. et al. Magnetic anisotropy of the alkali iridate Na2IrO3 at high magnetic fields: evidence for strong ferromagnetic Kitaev correlations. Phys. Rev. B 99, 081101 (2019).

    Article  ADS  Google Scholar 

  20. Johnson, R. D. et al. Monoclinic crystal structure of α-RuCl3 and the zigzag antiferromagnetic ground state. Phys. Rev. B 92, 235119 (2015).

    Article  ADS  Google Scholar 

  21. Kubota, Y., Tanaka, H., Ono, T., Narumi, Y. & Kindo, K. Successive magnetic phase transitions in α-RuCl3: XY-like frustrated magnet on the honeycomb lattice. Phys. Rev. B 91, 094422 (2015).

    Article  ADS  Google Scholar 

  22. Cao, H. B. et al. Low-temperature crystal and magnetic structure of α-RuCl3. Phys. Rev. B 93, 134423 (2016).

    Article  ADS  Google Scholar 

  23. Modic, K. A. et al. Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates. Nat. Commun. 8, 180 (2017).

    Article  ADS  Google Scholar 

  24. Leahy, I. A. et al. Anomalous thermal conductivity and magnetic torque response in the honeycomb magnet α-RuCl3. Phys. Rev. Lett. 118, 187203 (2017).

    Article  ADS  Google Scholar 

  25. Yoshitake, J., Nasu, J., Kato, Y. & Motome, Y. Majorana–magnon crossover by a magnetic field in the Kitaev model: continuous-time quantum Monte Carlo study. Phys. Rev. B 101, 100408 (2020).

    Article  ADS  Google Scholar 

  26. Gordon, J. S., Catuneanu, A., Sørensen, E. S. & Kee, H.-Y. Theory of the field-revealed Kitaev spin liquid. Nat. Commun. 10, 2470 (2019).

    Article  ADS  Google Scholar 

  27. Zheng, J. et al. Gapless spin excitations in the field-induced quantum spin liquid phase of α-RuCl3. Phys. Rev. Lett. 119, 227208 (2017).

    ADS  Google Scholar 

  28. Gammel, P. L., Schneemeyer, L. F., Wasczak, J. V. & Bishop, D. J. Evidence from mechanical measurements for flux-lattice melting in single-crystal YBa2Cu3O7 and Bi2.2Sr2Ca0.8Cu2O8. Phys. Rev. Lett. 61, 1666 (1988).

    Article  ADS  Google Scholar 

  29. Kleiman, R. N., Kaminsky, G. K., Reppy, J. D., Pindak, R. & Bishop, D. J. Single-crystal silicon high-Q torsional oscillators. Rev. Sci. Instrum. 56, 2088 (1985).

    Article  ADS  Google Scholar 

  30. Modic, K. A. et al. Resonant torsion magnetometry in anisotropic quantum materials. Nat. Commun. 9, 3975 (2018).

    Article  ADS  Google Scholar 

  31. Callen, H. B. Thermodynamics and an Introduction to Thermostatics (Wiley, 1985).

  32. Riedl, K., Li, Y., Winter, S. M. & Valentí, R. Sawtooth torque in anisotropic Jeff = 1/2 magnets: application to α-RuCl3. Phys. Rev. Lett. 122, 197202 (2019).

    Article  ADS  Google Scholar 

  33. Blundell, S. Magnetism in Condensed Matter (Oxford Univ. Press, 2000).

  34. Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Baenitz, A. Bangura, R. Coldea, G. Jackeli, S. Kivelson, S. Nagler, R. Valenti, C. Varma, S. Winter and J. Zaanen for insightful discussions. Samples were grown at the Max Planck Institute for Chemical Physics of Solids. The d.c.-field measurements were made at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee, FL. The pulsed-field measurements were made in the Pulsed Field Facility of the NHMFL in Los Alamos, NM. All work at the NHMFL is supported through the National Science Foundation Cooperative Agreement nos. DMR-1157490 and DMR-1644779, the US Department of Energy and the State of Florida. R.D.M. acknowledges support from LANL LDRD-DR 20160085 Topology and Strong Correlations. M.C. acknowledges support from the Department of Energy ‘Science of 100 tesla’ BES programme for high-field experiments. X-ray data acquisition and analysis was performed at Cornell University. Research conducted at the Cornell High Energy Synchrotron Source (CHESS) is supported by the National Science Foundation under award no. DMR-1332208. B.J.R. acknowledges support from the Institute for Quantum Matter, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0019331. Y.L. acknowledges support from the US Department of Energy through the LANL/LDRD programme and the G.T. Seaborg institute. J.C.P. is supported by a Gabilan Stanford Graduate Fellowship and an NSF Graduate Research Fellowship (grant no. DGE-114747). P.J.W.M. acknowledges funding from the Swiss National Science Foundation through project no. PP00P2-176789.

Author information

Authors and Affiliations

Authors

Contributions

K.A.M., R.D.M., B.J.R. and A.S. conceived the experiment. M.S. grew the samples. J.P.C.R., B.J.R. and D.A.S. performed X-ray characterization. K.A.M., R.D.M., M.D.B., Y.L., J.C.P., D.G., M.C., F.F.B., J.B.B. and A.S. performed the measurements. K.A.M., R.D.M, M.J.L., P.J.W.M., B.J.R. and A.S. analysed data and performed simulations. K.A.M., R.D.M., G.S.B., B.J.R. and A.S. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to K. A. Modic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Physics thanks Arnab Banerjee, Martin Klanjsek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–15 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modic, K.A., McDonald, R.D., Ruff, J.P.C. et al. Scale-invariant magnetic anisotropy in RuCl3 at high magnetic fields. Nat. Phys. 17, 240–244 (2021). https://doi.org/10.1038/s41567-020-1028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-1028-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing