Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers


Two-dimensional materials offer an exciting platform that enables the creation of van der Waals heterostructures with rich functions and intriguing physical properties that stem from different band alignments and diverse interlayer interactions. However, further exploration of two-dimensional van der Waals heterostructures is hindered by the limited coupling strength and lack of efficient methods for tuning the interlayer interactions. Here, by using a two-step chemical vapour deposition method, we realize high-quality 2H-stacked WSe2–MoSe2 heterostructures with strong interlayer coupling, and effective tuning of their interlayer interaction by hydrostatic pressure. We unambiguously establish the strong coupling nature in these WSe2–MoSe2 heterostructures through the existence of exclusive interlayer excitons instead of the typical intralayer excitons. We further demonstrate efficient tuning of the interlayer coupling by using pressure engineering, and observe a clear evolution and transition of interlayer excitons in WSe2–MoSe2 heterostructures with a pressure-induced band changeover, which is further confirmed by first-principles calculations. Our findings provide new opportunities for producing, exploring and tuning van der Waals heterostructures with strong interlayer coupling that can lead towards the realization of future excitonic devices based on tailor-made, atomically thin, two-dimensional stacks.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Excitonic and electronic behaviour in 2D heterostuctures.
Fig. 2: CVD-grown 2H WSe2–MoSe2 vdW heterostructures with strong interlayer coupling.
Fig. 3: Pressure engineering of electronic states in strongly coupled WSe2–MoSe2 heterostructures.
Fig. 4: Pressure-induced Raman vibration and band evolution in strongly coupled vdW heterostructures.

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  2. 2.

    Koda, D. S., Bechstedt, F., Marques, M. & Teles, L. K. Tuning electronic properties and band alignments of phosphorene combined with MoSe2 and WSe2. J. Phys. Chem. C 121, 3862–3869 (2017).

    Article  Google Scholar 

  3. 3.

    Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    ADS  Article  Google Scholar 

  4. 4.

    Li, X. et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv. 2, e1501882 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Zhang, W., Wang, Q., Chen, Y., Wang, Z. & Wee, A. T. S. Van der Waals stacked 2D layered materials for optoelectronics. 2D Mater. 3, 022001 (2016).

    Article  Google Scholar 

  7. 7.

    Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Peng, B. et al. Ultrafast charge transfer in MoS2/WSe2 p–n heterojunction. 2D Mater. 3, 025020 (2016).

    Article  Google Scholar 

  9. 9.

    Latini, S., Winther, K. T., Olsen, T. & Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 17, 938–945 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    Choudhary, N. et al. Centimeter scale patterned growth of vertically stacked few layer only 2D MoS2/WS2 van der Waals heterostructure. Sci. Rep. 6, 25456 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Wang, F. et al. Tuning coupling behavior of stacked heterostructures based on MoS2, WS2, and WSe2. Sci. Rep. 7, 44712 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Puretzky, A. A. et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano 9, 6333–6342 (2015).

    Article  Google Scholar 

  14. 14.

    Xia, J., Yan, J. & Shen, Z. X. Transition metal dichalcogenides: structural, optical and electronic property tuning via thickness and stacking. FlatChem 4, 1–19 (2017).

    Article  Google Scholar 

  15. 15.

    Zhao, Y. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007–1015 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Nayak, P. K. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 11, 4041–4050 (2017).

    Article  Google Scholar 

  17. 17.

    Yan, J. et al. Stacking-dependent interlayer coupling in trilayer MoS2 with broken inversion symmetry. Nano Lett. 15, 8155–8161 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Son, Y. et al. Observation of switchable photoresponse of a monolayer WSe2–MoS2 lateral heterostructure via photocurrent spectral atomic force microscopic imaging. Nano Lett. 16, 3571–3577 2016).

    ADS  Article  Google Scholar 

  19. 19.

    Mitioglu, A. A. et al. Optical investigation of monolayer and bulk tungsten diselenide (WSe2) in high magnetic fields. Nano Lett. 15, 4387–4392 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    He, Y. et al. Strain-induced electronic structure changes in stacked van der Waals heterostructures. Nano Lett. 16, 3314–3320 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Chen, M. et al. Ordered and atomically perfect fragmentation of layered transition metal dichalcogenides via mechanical instabilities. ACS Nano 11, 9191–9199 (2017).

    Article  Google Scholar 

  22. 22.

    Tongay, S. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 14, 3185–3190 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    Fan, W. et al. Vibrational spectrum renormalization by enforced coupling across the van der Waals gap between MoS2 and WS2 monolayers. Phys. Rev. B 92, 241408 (2015).

    ADS  Article  Google Scholar 

  24. 24.

    Rooney, A. P. et al. Observing imperfection in atomic interfaces for van der Waals heterostructures. Nano Lett. 17, 5222–5228 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Zhang, N. et al. Moiré Intralayer Excitons in a MoSe2/MoS2 Heterostructure. Nano Lett. 18, 7651–7657 (2018).

    ADS  Article  Google Scholar 

  28. 28.

    Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    ADS  Article  Google Scholar 

  29. 29.

    Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    ADS  Article  Google Scholar 

  30. 30.

    Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    ADS  Article  Google Scholar 

  31. 31.

    Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    ADS  Article  Google Scholar 

  32. 32.

    Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

    ADS  Article  Google Scholar 

  33. 33.

    Hui, Y. Y. et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7, 7126–7131 (2013).

    Article  Google Scholar 

  34. 34.

    Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature 557, 404–408 (2018).

    ADS  Article  Google Scholar 

  35. 35.

    Yu, Y. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 15, 486–491 (2015).

    ADS  Article  Google Scholar 

  36. 36.

    Gong, Y. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135–6141 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    Puretzky, A. A. et al. Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy. ACS Nano 10, 2736–2744 (2016).

    Article  Google Scholar 

  38. 38.

    O’Brien, M. et al. Mapping of low-frequency Raman modes in CVD-grown transition metal dichalcogenides: layer number, stacking orientation and resonant effects. Sci. Rep. 6, 19476 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Xia, J. et al. Current rectification and asymmetric photoresponse in MoS2 stacking-induced homojunctions. 2D Mater. 4, 035011 (2017).

    Article  Google Scholar 

  40. 40.

    Xia, J. et al. Valley polarization in stacked MoS2 induced by circularly polarized light. Nano Res. 10, 1618–1626 (2017).

    Article  Google Scholar 

  41. 41.

    Heo, H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 6, 7372 (2015).

    ADS  Article  Google Scholar 

  42. 42.

    Wang, L. et al. Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer. Nat. Commun. 8, 13906 (2017).

    ADS  Article  Google Scholar 

  43. 43.

    Zhao, Z. et al. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide. Nat. Commun. 6, 7312 (2015).

    ADS  Article  Google Scholar 

  44. 44.

    Wang, X. et al. Pressure-induced iso-structural phase transition and metallization in WSe2. Sci. Rep. 7, 46694 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    Xia, J. et al. Pressure-induced phase transition in Weyl semimetallic WTe2. Small 13, 1701887 (2017).

    Article  Google Scholar 

  46. 46.

    Ruf, F. et al. Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs,FA,MA)Pb(I,Br)3 perovskites. APL Mater. 7, 031113 (2019).

    ADS  Article  Google Scholar 

  47. 47.

    Elliot, R. J. Intensity of optical absorption by excitons. Phys. Rev. 108, 1384–1389 (1957).

    ADS  Article  Google Scholar 

  48. 48.

    Saba, M. et al. Correlated electron–hole plasma in organometal perovskites. Nat. Commun. 5, 5049 (2014).

    ADS  Article  Google Scholar 

  49. 49.

    Chaves, A. J., Ribeiro, R. M., Frederico, T. & Peres, N. M. R. Excitonic effects in the optical properties of 2D materials: an equation of motion approach. 2D Mater. 4, 025086 (2017).

    Article  Google Scholar 

  50. 50.

    Dou, X., Ding, K., Jiang, D. & Sun, B. Tuning and identification of interband transitions in monolayer and bilayer molybdenum disulfide using hydrostatic pressure. ACS Nano 8, 7458–7464 (2014).

    Article  Google Scholar 

  51. 51.

    Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  Google Scholar 

  52. 52.

    Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    ADS  Article  Google Scholar 

  53. 53.

    Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    ADS  Article  Google Scholar 

  54. 54.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS  Article  Google Scholar 

  55. 55.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  Article  Google Scholar 

  56. 56.

    Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    ADS  Article  Google Scholar 

  57. 57.

    Lazzeri, M. & Mauri, F. First-principles calculation of vibrational Raman spectra in large systems: signature of small rings in crystalline SiO2. Phys. Rev. Lett. 90, 036401 (2003).

    ADS  Article  Google Scholar 

Download references


J.X. and Z.W. acknowledge support from the Ministry of Science and Technology of China (grant no. 2018YFE0115500), the National Natural Science Foundation of China (no. 61774029) and the Science and Technology Department of Sichuan Province in China (nos. 2019JDTD0006 and 2019YFSY0007). J.Y. gratefully acknowledges financial support from the National Natural Science Foundation of China (grant no. 11704185) and the Natural Science Foundation of Jiangsu Province in China (no. BK20171021). Z.S. gratefully acknowledges the Ministry of Education of Singapore for the funding of this research through AcRF Tier 1 grants (nos. RG103/16 and RG195/17) and a Tier 3 grant (no. MOE2016-T3-1-006 (S)). Z.L. acknowledges funding support through a Tier 3 grant (no. MOE2018-T3-1-002), a Tier 2 grant (no. MOE2016-T2-2-153) and the A*STAR Quantum Technologies for Engineering Programme. J.X. and Z.W. thank S. Shi for helpful discussions, and the support from our group members T. Wen, Y. Liang, B. Xu, F. Xiao, J. Zhu, J. Fang, S. Wu, J. Li, Q. Deng, F. Wang and Z. Zhang.

Author information




J.X., J.Y. and Z.S. conceived the study. J.X. performed the experimental work. J.Y. performed the simulation studies. J.X., Z.W. and J.Y. analysed the data. Y.H. and Z.L. helped to prepare the heterostructure samples. Y.G. and P.M.A. performed the TEM/STEM measurements. W.C. and T.C.S. helped with the ultrafast pump–probe measurements. J.X. and Z.W. wrote and revised the manuscript. All authors discussed the results.

Corresponding authors

Correspondence to Juan Xia, Jiaxu Yan, Zenghui Wang or Zexiang Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Fred Withers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Supplementary Tables 1 and 2.

Source data

Source Data Fig. 2

Data in Cartesian plots.

Source Data Fig. 3

Data in Cartesian plots.

Source Data Fig. 4

Data in Cartesian plots.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Yan, J., Wang, Z. et al. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nat. Phys. 17, 92–98 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing