Direct observation of two-dimensional magnons in atomically thin CrI3


Magnons are collective spin excitations in crystals with long-range magnetic order. The emergent van der Waals magnets1,2,3 provide a highly tunable platform to explore magnetic excitations in the two-dimensional limit with intriguing properties, manifesting from their honeycomb lattice structure and switchable magnetic configurations. Here, we report the direct observation of two-dimensional magnons through magneto-Raman spectroscopy with optical selection rules determined by the interplay between crystal symmetry, layer number and magnetic states in atomically thin CrI3. In monolayers, we observe an acoustic magnon mode at ~0.3 meV. It has strict cross-circularly polarized selection rules locked to the magnetization direction that originates from the conservation of angular momentum of photons and magnons dictated by three-fold rotational symmetry4. Additionally, we reveal optical magnon modes at ~17 meV. This mode is Raman silent in monolayers, but optically active in bilayers and bulk due to a relaxation of the parity criterion resulting from the layer index. In the layered antiferromagnetic states, we directly resolve two degenerate optical magnon modes with opposite angular momentum and conjugate optical selection rules. From these measurements, we quantitatively extract the spin-wave gap, magnetic anisotropy and intralayer and interlayer exchange constants, and establish two-dimensional magnets as a new platform for exploring magnon physics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Spin-wave diagram of monolayer CrI3, sample characterization and low-frequency Raman spectra.
Fig. 2: Magnetic field and temperature dependence of spin waves in monolayer CrI3.
Fig. 3: Magnon scattering in magnetic CrI3 bilayers.
Fig. 4: Optical magnons in bilayer CrI3.

Data availability

The datasets generated during and/or analysed during this study are available from the corresponding author upon reasonable request.


  1. 1.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    ADS  Article  Google Scholar 

  2. 2.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Lee, J. U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Higuchi, T., Kanda, N., Tamaru, H. & Kuwata-Gonokami, M. Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO. Phys. Rev. Lett. 106, 047401 (2011).

    ADS  Article  Google Scholar 

  5. 5.

    Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).

    ADS  Article  Google Scholar 

  6. 6.

    Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    ADS  Article  Google Scholar 

  7. 7.

    Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).

    ADS  Article  Google Scholar 

  9. 9.

    Huang, B. et al. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat. Nanotechnol. 15, 212–216 (2020).

    ADS  Article  Google Scholar 

  10. 10.

    Zhang, Y. et al. Magnetic order-induced polarization anomaly of Raman scattering in 2D magnet CrI3. Nano Lett. 20, 729–734 (2020).

    ADS  Article  Google Scholar 

  11. 11.

    MacNeill, D. et al. Gigahertz frequency antiferromagnetic resonance and strong magnon-magnon coupling in the layered crystal CrCl3. Phys. Rev. Lett. 123, 047204 (2019).

    ADS  Article  Google Scholar 

  12. 12.

    Kapoor, L. N. et al. Evidence of standing spin-waves in a van der Waals magnetic material. Preprint at (2020).

  13. 13.

    Xing, W. et al. Magnon transport in quasi-two-dimensional van der Waals antiferromagnets. Phys. Rev. X 9, 011026 (2019).

    Google Scholar 

  14. 14.

    Costa, A. T., Santos, D. L. R., Peres, N. M. R. & Fernández-Rossier, J. Topological magnons in CrI3 monolayers: an itinerant fermion description. Preprint at (2020).

  15. 15.

    Li, S. et al. Magnetic field-induced quantum phase transitions in a van der Waals magnet. Phys. Rev. X 10, 011075 (2020).

    Google Scholar 

  16. 16.

    McCreary, A. et al. Distinct magneto-Raman signatures of spin-flip phase transitions in CrI3. Preprint at (2019).

  17. 17.

    Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    Article  Google Scholar 

  18. 18.

    Chen, L. et al. Topological spin excitations in honeycomb ferromagnet CrI3. Phys. Rev. X 8, 041028 (2018).

    Google Scholar 

  19. 19.

    Jin, W. et al. Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet. Nat. Commun. 9, 5122 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Kim, H. H. et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl Acad. Sci. USA 116, 11131–11136 (2019).

    ADS  Article  Google Scholar 

  21. 21.

    Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).

    Article  Google Scholar 

  22. 22.

    Lee, I. et al. Fundamental spin interactions underlying the magnetic anisotropy in the Kitaev ferromagnet CrI3. Phys. Rev. Lett. 124, 017201 (2020).

    ADS  Article  Google Scholar 

  23. 23.

    Hisatomi, R. et al. Helicity-changing Brillouin light scattering by magnons in a ferromagnetic crystal. Phys. Rev. Lett. 123, 207401 (2019).

    ADS  Article  Google Scholar 

  24. 24.

    Keffer, F. & Kittel, C. Theory of antiferromagnetic resonance. Phys. Rev. 85, 329 (1952).

    ADS  MATH  Article  Google Scholar 

  25. 25.

    Ubrig, N. et al. Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals. 2D Mater. 7, 015007 (2019).

    Article  Google Scholar 

  26. 26.

    Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    Jiang, P. et al. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 99, 144401 (2019).

    ADS  Article  Google Scholar 

  28. 28.

    Soriano, D., Cardoso, C. & Fernández-Rossier, J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Solid State Commun. 299, 113662 (2019).

    Article  Google Scholar 

  29. 29.

    Cheng, R., Daniels, M. W., Zhu, J. G. & Xiao, D. Antiferromagnetic spin wave field-effect transistor. Sci. Rep. 6, 24223 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 90, 015005 (2016).

    MathSciNet  Google Scholar 

  31. 31.

    Zhang, Y., Chuang, T. H., Zakeri, K. & Kirschner, J. Relaxation time of terahertz magnons excited at ferromagnetic surfaces. Phys. Rev. Lett. 109, 087203 (2012).

    ADS  Article  Google Scholar 

  32. 32.

    Qin, H. J., Zakeri, K., Ernst, A. & Kirschner, J. Temperature dependence of magnetic excitations: terahertz magnons above the Curie temperature. Phys. Rev. Lett. 118, 127203 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Qin, H. J. et al. Long-living terahertz magnons in ultrathin metallic ferromagnets. Nat. Commun. 6, 6126 (2015).

    ADS  Article  Google Scholar 

  34. 34.

    Zhang, X. et al. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat. Mater. (2020).

    Article  Google Scholar 

  35. 35.

    Castellanos-Gomez, A., Buscema, M. & Molenaar, R. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  Google Scholar 

Download references


We thank N. Wilson for helpful discussion. This work was mainly supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0012509). Device fabrication and understanding of magnon optical selection rules were partially supported by AFOSR MURI 2D MAGIC (FA9550-19-1-0390). Work at ORNL (M.A.M.) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT, Japan, and CREST (JPMJCR15F3), JST. B.H. acknowledges partial support from NW IMPACT. X.X. acknowledges support from the State of Washington funded Clean Energy Institute and from the Boeing Distinguished Professorship in Physics.

Author information




X.X., J.C. and B.H. conceived the experiment. J.C. and B.H. fabricated and characterized the samples, assisted by A.M. and P.T. J.C. and B.H. performed the Raman and magnetic circular dichroism measurements, assisted by P.T. and T.S. J.C., B.H., N.S., D.X. and X.X. analysed and interpreted the results. T.T. and K.W. synthesized the hBN crystals. M.A.M. synthesized and characterized the bulk CrI3 crystals. J.C., B.H., X.X. and D.X. wrote the paper with input from all authors. All authors discussed the results.

Corresponding authors

Correspondence to Di Xiao or Xiaodong Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Note 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cenker, J., Huang, B., Suri, N. et al. Direct observation of two-dimensional magnons in atomically thin CrI3. Nat. Phys. (2020).

Download citation


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing