Abstract
The radiation-pressure coupling between two harmonic oscillators has been used in optomechanics for breakthrough experiments in the control and detection of mechanical displacement. Used primarily in optomechanics, there have been few reports of exploiting such a type of interaction in other platforms. Here, we engineer two superconducting LC circuits coupled by a strong photon-pressure interaction, a term we use in analogy to the radiation-pressure interaction between light and mechanical objects. The coupling arises from a change in the resonant frequency of one circuit in response to the current flowing in the second. We observe dynamical backaction between the two circuits, photon-pressure-induced transparency and absorption, and enter the strong coupling regime. Furthermore, we observe parametrically amplified thermal current fluctuations in a radiofrequency circuit close to its quantum ground state. Owing to the high design flexibility of superconducting circuits, our approach will enable new experiments with radiofrequency photons and parameter regimes of photon-pressure coupling that are not accessible in other platforms.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Four-wave-cooling to the single phonon level in Kerr optomechanics
Communications Physics Open Access 02 February 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
All data and processing scripts of the results presented in this paper, including those in the Supplementary Information, are available on Zenodo with the identifier https://doi.org/10.5281/zenodo.3886216.
References
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).
Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).
Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol. 4, 820–823 (2009).
Anetsberger, G. et al. Measuring nanomechanical motion with an imprecision below the standard quantum limit.Phys. Rev. A 82, 061804(R) (2010).
Riedinger, R. et al. Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473–477 (2018).
Ockeloen-Korppi, C. F. et al. Stabilized entanglement of massive mechanical oscillators. Nature 556, 478–482 (2018).
Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).
Pirkkalainen, J.-M., Damskägg, E., Brandt, M., Massel, F. & Sillanpää, M. A. Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 115, 243601 (2015).
Reed, A. P. et al. Faithful conversion of propagating quantum information to mechanical motion. Nat. Phys. 13, 1163–1167 (2017).
Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).
Zhou, X. et al. Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys. 9, 179–184 (2013).
Metelmann, A. & Clerk, A. A. Quantum-limited amplification via reservoir engineering. Phys. Rev. Lett. 112, 133904 (2014).
Massel, F. et al. Microwave amplification with nanomechanical resonators. Nature 480, 351–354 (2011).
Nunnenkamp, A., Sudhir, V., Feofanov, A. K., Roulet, A. & Kippenberg, T. J. Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics. Phys. Rev. Lett. 113, 023604 (2014).
Ockeloen-Korppi, C. F. et al. Low-noise amplification and frequency conversion with a multiport microwave optomechanical device. Phys. Rev. X 6, 041024 (2016).
Bothner, D. et al. Cavity electromechanics with parametric mechanical driving. Nat. Commun. 11, 1589 (2020).
Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).
Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).
Forsch, M. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nat. Phys. 16, 69–74 (2019).
Malz, D. et al. Quantum-limited directional amplifiers with optomechanics. Phys. Rev. Lett. 120, 023601 (2018).
Bernier, N. R. et al. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8, 604 (2017).
Barzanjeh, S. et al. Mechanical on-chip microwave circulator. Nat. Commun. 8, 953 (2017).
Xu, H., Jiang, L., Clerk, A. A. & Harris, J. G. E. Nonreciprocal control and cooling of phonon modes in an optomechanical system. Nature 568, 65–69 (2019).
Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).
Tóth, L. D., Bernier, N. R., Nunnenkamp, A., Feofanov, A. K. & Kippenberg, T. J. A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nat. Phys. 13, 787–792 (2017).
Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).
Mahboob, I., Nishiguchi, K., Okamoto, H. & Yamaguchi, H. Phonon-cavity electromechanics. Nat. Phys. 8, 387–392 (2012).
De Alba, R. et al. Tunable phonon-cavity coupling in graphene membranes. Nat. Nanotechnol. 11, 741–746 (2016).
Mathew, J. P., Patel, R. N., Borah, A., Vijay, R. & Deshmukh, M. M. Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums. Nat. Nanotechnol. 11, 747–751 (2016).
Cho, S. et al. Strong two-mode parametric interaction and amplification in a nanomechanical resonator. Phys. Rev. Appl. 9, 064023 (2018).
Johansson, J. R., Johansson, G. & Nori, F. Optomechanical-like coupling between superconducting resonators. Phys. Rev. A 90, 053833 (2014).
Kim, E.-j, Johansson, J. R. & Nori, F. Circuit analog of quadratic optomechanics. Phys. Rev. A 91, 033835 (2015).
Hardal, A. Ü. C., Aslan, N., Wilson, C. M. & MüstecaplÃoÄŸlu, Ö. E. Quantum heat engine with coupled superconducting resonators. Phys. Rev. E 96, 062120 (2017).
Weigand, D. J. & Terhal, B. M. Realizing modular quadrature measurements via a tunable photon–pressure coupling in circuit QED. Phys. Rev. A 101, 053840 (2020).
Eichler, C. & Petta, J. R. Realizing a circuit analog of an optomechanical system with longitudinally coupled superconducting resonators. Phys. Rev. Lett. 120, 227702 (2018).
Jansen, E., Machado, J. D. P. & Blanter, Ya. M. Realization of a degenerate parametric oscillator in electromechanical systems. Phys. Rev. B 99, 045401 (2019).
Nunnenkamp, A., Børkje, K. & Girvin, S. M. Single-photon optomechanics. Phys. Rev. Lett. 107, 063602 (2011).
Rabl, P. Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011).
Dobrindt, J. M., Wilson-Rae, I. & Kippenberg, T. J. Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008).
Gröblacher, S., Hammerer, K., Vanner, M. R. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009).
Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).
Agarwal, G. S. & Huang, S. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803(R) (2010).
Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).
Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).
Teufel, J. D., Harlow, J. W., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008).
Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005).
Shevchuk, O., Steele, G. A. & Blanter, Ya. M. Strong and tunable couplings in flux-mediated optomechanics. Phys. Rev. B 96, 014508 (2017).
Rodrigues, I. C., Bothner, D. & Steele, G. A. Coupling microwave photons to a mechanical resonator using quantum interference. Nat. Commun. 10, 5359 (2019).
Weinstein, A. J. et al. Observation and interpretation of motional sideband asymmetry in a quantum electromechanical device. Phys. Rev. X 4, 041003 (2014).
Bergeal, N. et al. Analog information processing at the quantum limit with a Josephson ring modulator. Nat. Phys. 6, 296–302 (2010).
Fedortchenko, S. et al. Quantum simulation of ultrastrongly coupled bosonic modes using superconducting circuits. Phys. Rev. A 95, 042313 (2017).
Marković, D. et al. Demonstration of an effective ultrastrong coupling between two oscillators. Phys. Rev. A 95, 042313 (2017).
Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).
Gely, M. F. et al. Observation and stabilization of photonic Fock states in a hot radio-frequency resonator. Science 363, 1072–1075 (2019).
Acknowledgements
We thank M.F. Gely for help with device fabrication and M.D. Jenkins for support with the data acquisition software. This research was supported by the Netherlands Organisation for Scientific Research (NWO) in the Innovational Research Incentives Scheme VIDI, project no. 680-47-526. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 681476-QOMD) and from the European Union’s Horizon 2020 research and innovation programme under grant no. 732894-HOT.
Author information
Authors and Affiliations
Contributions
D.B. and I.C.R. designed and fabricated the device, performed the measurements and analysed the data. G.A.S. conceived the experiment and supervised the project. D.B. and I.C.R. edited the manuscript with input from G.A.S. All authors discussed the results and the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary data, theory, methods and figures.
Rights and permissions
About this article
Cite this article
Bothner, D., Rodrigues, I.C. & Steele, G.A. Photon-pressure strong coupling between two superconducting circuits. Nat. Phys. 17, 85–91 (2021). https://doi.org/10.1038/s41567-020-0987-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-020-0987-5
This article is cited by
-
Collapse of Superradiant Phase and Unstable Macroscopic Vacuum State in An-Optomechanical-Dual-Cavity with a Bose-Einstein Condensate
International Journal of Theoretical Physics (2023)
-
Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities
Frontiers of Physics (2023)
-
Four-wave-cooling to the single phonon level in Kerr optomechanics
Communications Physics (2022)