Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photon-pressure strong coupling between two superconducting circuits

Abstract

The radiation-pressure coupling between two harmonic oscillators has been used in optomechanics for breakthrough experiments in the control and detection of mechanical displacement. Used primarily in optomechanics, there have been few reports of exploiting such a type of interaction in other platforms. Here, we engineer two superconducting LC circuits coupled by a strong photon-pressure interaction, a term we use in analogy to the radiation-pressure interaction between light and mechanical objects. The coupling arises from a change in the resonant frequency of one circuit in response to the current flowing in the second. We observe dynamical backaction between the two circuits, photon-pressure-induced transparency and absorption, and enter the strong coupling regime. Furthermore, we observe parametrically amplified thermal current fluctuations in a radiofrequency circuit close to its quantum ground state. Owing to the high design flexibility of superconducting circuits, our approach will enable new experiments with radiofrequency photons and parameter regimes of photon-pressure coupling that are not accessible in other platforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two superconducting LC circuits coupled by a photon-pressure interaction.
Fig. 2: Observation of photon-pressure dynamical backaction between two superconducting circuits.
Fig. 3: From PPIT to the parametric strong coupling regime by tuning the SQUID flux bias.
Fig. 4: Observation of photon-pressure-amplified thermal noise of a radiofrequency superconducting circuit.

Similar content being viewed by others

Data availability

All data and processing scripts of the results presented in this paper, including those in the Supplementary Information, are available on Zenodo with the identifier https://doi.org/10.5281/zenodo.3886216.

References

  1. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  2. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  ADS  Google Scholar 

  3. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  ADS  Google Scholar 

  4. Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol. 4, 820–823 (2009).

    Article  ADS  Google Scholar 

  5. Anetsberger, G. et al. Measuring nanomechanical motion with an imprecision below the standard quantum limit.Phys. Rev. A 82, 061804(R) (2010).

    Article  ADS  Google Scholar 

  6. Riedinger, R. et al. Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473–477 (2018).

    Article  ADS  Google Scholar 

  7. Ockeloen-Korppi, C. F. et al. Stabilized entanglement of massive mechanical oscillators. Nature 556, 478–482 (2018).

    Article  ADS  Google Scholar 

  8. Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Pirkkalainen, J.-M., Damskägg, E., Brandt, M., Massel, F. & Sillanpää, M. A. Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 115, 243601 (2015).

    Article  ADS  Google Scholar 

  10. Reed, A. P. et al. Faithful conversion of propagating quantum information to mechanical motion. Nat. Phys. 13, 1163–1167 (2017).

    Article  Google Scholar 

  11. Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

    Article  ADS  Google Scholar 

  12. Zhou, X. et al. Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys. 9, 179–184 (2013).

    Article  Google Scholar 

  13. Metelmann, A. & Clerk, A. A. Quantum-limited amplification via reservoir engineering. Phys. Rev. Lett. 112, 133904 (2014).

    Article  ADS  Google Scholar 

  14. Massel, F. et al. Microwave amplification with nanomechanical resonators. Nature 480, 351–354 (2011).

    Article  ADS  Google Scholar 

  15. Nunnenkamp, A., Sudhir, V., Feofanov, A. K., Roulet, A. & Kippenberg, T. J. Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics. Phys. Rev. Lett. 113, 023604 (2014).

    Article  ADS  Google Scholar 

  16. Ockeloen-Korppi, C. F. et al. Low-noise amplification and frequency conversion with a multiport microwave optomechanical device. Phys. Rev. X 6, 041024 (2016).

    Google Scholar 

  17. Bothner, D. et al. Cavity electromechanics with parametric mechanical driving. Nat. Commun. 11, 1589 (2020).

    Article  ADS  Google Scholar 

  18. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    Article  Google Scholar 

  19. Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    Article  Google Scholar 

  20. Forsch, M. et al. Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nat. Phys. 16, 69–74 (2019).

    Article  Google Scholar 

  21. Malz, D. et al. Quantum-limited directional amplifiers with optomechanics. Phys. Rev. Lett. 120, 023601 (2018).

    Article  ADS  Google Scholar 

  22. Bernier, N. R. et al. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8, 604 (2017).

    Article  ADS  Google Scholar 

  23. Barzanjeh, S. et al. Mechanical on-chip microwave circulator. Nat. Commun. 8, 953 (2017).

    Article  ADS  Google Scholar 

  24. Xu, H., Jiang, L., Clerk, A. A. & Harris, J. G. E. Nonreciprocal control and cooling of phonon modes in an optomechanical system. Nature 568, 65–69 (2019).

    Article  ADS  Google Scholar 

  25. Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article  Google Scholar 

  26. Tóth, L. D., Bernier, N. R., Nunnenkamp, A., Feofanov, A. K. & Kippenberg, T. J. A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nat. Phys. 13, 787–792 (2017).

    Article  Google Scholar 

  27. Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80–83 (2016).

    Article  ADS  Google Scholar 

  28. Mahboob, I., Nishiguchi, K., Okamoto, H. & Yamaguchi, H. Phonon-cavity electromechanics. Nat. Phys. 8, 387–392 (2012).

    Article  Google Scholar 

  29. De Alba, R. et al. Tunable phonon-cavity coupling in graphene membranes. Nat. Nanotechnol. 11, 741–746 (2016).

    Article  ADS  Google Scholar 

  30. Mathew, J. P., Patel, R. N., Borah, A., Vijay, R. & Deshmukh, M. M. Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums. Nat. Nanotechnol. 11, 747–751 (2016).

    Article  ADS  Google Scholar 

  31. Cho, S. et al. Strong two-mode parametric interaction and amplification in a nanomechanical resonator. Phys. Rev. Appl. 9, 064023 (2018).

    Article  ADS  Google Scholar 

  32. Johansson, J. R., Johansson, G. & Nori, F. Optomechanical-like coupling between superconducting resonators. Phys. Rev. A 90, 053833 (2014).

    Article  ADS  Google Scholar 

  33. Kim, E.-j, Johansson, J. R. & Nori, F. Circuit analog of quadratic optomechanics. Phys. Rev. A 91, 033835 (2015).

    Article  ADS  Google Scholar 

  34. Hardal, A. Ü. C., Aslan, N., Wilson, C. M. & Müstecaplíoğlu, Ö. E. Quantum heat engine with coupled superconducting resonators. Phys. Rev. E 96, 062120 (2017).

    Article  ADS  Google Scholar 

  35. Weigand, D. J. & Terhal, B. M. Realizing modular quadrature measurements via a tunable photon–pressure coupling in circuit QED. Phys. Rev. A 101, 053840 (2020).

    Article  ADS  Google Scholar 

  36. Eichler, C. & Petta, J. R. Realizing a circuit analog of an optomechanical system with longitudinally coupled superconducting resonators. Phys. Rev. Lett. 120, 227702 (2018).

    Article  ADS  Google Scholar 

  37. Jansen, E., Machado, J. D. P. & Blanter, Ya. M. Realization of a degenerate parametric oscillator in electromechanical systems. Phys. Rev. B 99, 045401 (2019).

    Article  ADS  Google Scholar 

  38. Nunnenkamp, A., Børkje, K. & Girvin, S. M. Single-photon optomechanics. Phys. Rev. Lett. 107, 063602 (2011).

    Article  ADS  Google Scholar 

  39. Rabl, P. Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011).

    Article  ADS  Google Scholar 

  40. Dobrindt, J. M., Wilson-Rae, I. & Kippenberg, T. J. Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008).

    Article  ADS  Google Scholar 

  41. Gröblacher, S., Hammerer, K., Vanner, M. R. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009).

    Article  ADS  Google Scholar 

  42. Teufel, J. D. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).

    Article  ADS  Google Scholar 

  43. Agarwal, G. S. & Huang, S. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803(R) (2010).

    Article  ADS  Google Scholar 

  44. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    Article  ADS  Google Scholar 

  45. Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

    Article  ADS  Google Scholar 

  46. Teufel, J. D., Harlow, J. W., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008).

    Article  ADS  Google Scholar 

  47. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005).

    Article  ADS  Google Scholar 

  48. Shevchuk, O., Steele, G. A. & Blanter, Ya. M. Strong and tunable couplings in flux-mediated optomechanics. Phys. Rev. B 96, 014508 (2017).

    Article  ADS  Google Scholar 

  49. Rodrigues, I. C., Bothner, D. & Steele, G. A. Coupling microwave photons to a mechanical resonator using quantum interference. Nat. Commun. 10, 5359 (2019).

    Article  ADS  Google Scholar 

  50. Weinstein, A. J. et al. Observation and interpretation of motional sideband asymmetry in a quantum electromechanical device. Phys. Rev. X 4, 041003 (2014).

    Google Scholar 

  51. Bergeal, N. et al. Analog information processing at the quantum limit with a Josephson ring modulator. Nat. Phys. 6, 296–302 (2010).

    Article  Google Scholar 

  52. Fedortchenko, S. et al. Quantum simulation of ultrastrongly coupled bosonic modes using superconducting circuits. Phys. Rev. A 95, 042313 (2017).

    Article  ADS  Google Scholar 

  53. Marković, D. et al. Demonstration of an effective ultrastrong coupling between two oscillators. Phys. Rev. A 95, 042313 (2017).

    Article  ADS  Google Scholar 

  54. Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  55. Gely, M. F. et al. Observation and stabilization of photonic Fock states in a hot radio-frequency resonator. Science 363, 1072–1075 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M.F. Gely for help with device fabrication and M.D. Jenkins for support with the data acquisition software. This research was supported by the Netherlands Organisation for Scientific Research (NWO) in the Innovational Research Incentives Scheme VIDI, project no. 680-47-526. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 681476-QOMD) and from the European Union’s Horizon 2020 research and innovation programme under grant no. 732894-HOT.

Author information

Authors and Affiliations

Authors

Contributions

D.B. and I.C.R. designed and fabricated the device, performed the measurements and analysed the data. G.A.S. conceived the experiment and supervised the project. D.B. and I.C.R. edited the manuscript with input from G.A.S. All authors discussed the results and the manuscript.

Corresponding authors

Correspondence to D. Bothner or G. A. Steele.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary data, theory, methods and figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bothner, D., Rodrigues, I.C. & Steele, G.A. Photon-pressure strong coupling between two superconducting circuits. Nat. Phys. 17, 85–91 (2021). https://doi.org/10.1038/s41567-020-0987-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-0987-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing