Suppression of superconductivity by anisotropic strain near a nematic quantum critical point

Abstract

In most unconventional and high-temperature superconductors, superconductivity emerges as a nearby symmetry-breaking phase is suppressed by chemical doping or pressure1,2,3,4,5,6,7. This has led to the belief that the fluctuations associated with the symmetry-breaking phase are beneficial, if not responsible, for the superconducting pairing8,9. A direct test to verify this hypothesis is to observe a decrease of the superconducting critical temperature (Tc) by applying the symmetry-breaking conjugate field that suppresses the dynamic fluctuations of the competing order. However, most of the competing phases in unconventional superconductors break translational symmetry, requiring a spatially modulated conjugate field that is difficult to realize experimentally. Here, we show that anisotropic strain, the conjugate field of nematicity, reduces the Tc of an iron pnictide. For optimally doped samples we show a fivefold reduction of Tc with less than one per cent of strain. For underdoped samples, Tc becomes zero yielding a fully metallic ground state. In addition to providing direct evidence of the role played by the nematic fluctuations in the formation of the superconducting state, these results demonstrate tunable mechanical control of a high-temperature superconductor, an important step forward for technological applications of superconductivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Background and superconducting transition in Ba(Fe0.958Co0.042)2As2 under uniaxial stress.
Fig. 2: Strain-tuned superconductor-to-metal transition in Ba(Fe0.958Co0.042)2As2.
Fig. 3: Strained superconducting transition of optimally and overdoped Ba(Fe1–xCox)2As2.
Fig. 4: Strain tunability of superconducting Tc in Ba(Fe1–xCox)2As2.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. 1.

    Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nature 4, 186–197 (2008).

    Google Scholar 

  2. 2.

    Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984).

    ADS  Article  Google Scholar 

  3. 3.

    Han, G. H., Duong, D. L., Keum, D. H., Yun, S. J. & Lee, Y. H. van der Waals metallic transition metal dichalcogenides. Chem. Rev. 118, 6297–6336 (2018).

    Article  Google Scholar 

  4. 4.

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Singleton, J. & Mielke, C. Quasi-two-dimensional organic superconductors: a review. Contemp. Phys. 43, 63–96 (2002).

    ADS  Article  Google Scholar 

  6. 6.

    Si, Q., Yu, R. & Abrahams, E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mater. 1, 16017 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Stewart, G. R. Superconductivity in iron compounds. Rev. Mod. Phys. 83, 1589–1641 (2011).

    ADS  Article  Google Scholar 

  8. 8.

    Norman, M. R. The challenge of unconventional superconductivity. Science 332, 196–200 (2011).

    ADS  Article  Google Scholar 

  9. 9.

    Monthoux, P., Pines, D. & Lonzarich, G. G. Superconductivity without phonons. Nature 450, 1177–1182 (2007).

    ADS  Article  Google Scholar 

  10. 10.

    Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

    ADS  Article  Google Scholar 

  11. 11.

    Chu, J.-H., Analytis, J. G., Kucharczyk, C. & Fisher, I. R. Determination of the phase diagram of the electron-doped superconductor Ba(Fe1–xCox)2As2. Phys. Rev. B 79, 014506 (2009).

    ADS  Article  Google Scholar 

  12. 12.

    Ni, N. et al. Effects of Co substitution on thermodynamic and transport properties and anisotropic H c2 in Ba(Fe1–xCox)2As2 single crystals. Phys. Rev. B 78, 214515 (2008).

    ADS  Article  Google Scholar 

  13. 13.

    Chubukov, A. V., Fernandes, R. M. & Schmalian, J. Origin of nematic order in FeSe. Phys. Rev. B 91, 201105 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    Singh, U. R. et al. Evidence for orbital order and its relation to superconductivity in FeSe0.4Te0.6. Sci. Adv. 1, e1500206 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Nandi, S. et al. Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba(Fe1–xCox)2As2 single crystals. Phys. Rev. Lett. 104, 057006 (2010).

    ADS  Article  Google Scholar 

  16. 16.

    Hosoi, S. et al. Nematic quantum critical point without magnetism in FeSe1–xSx superconductors. Proc. Natl Acad. Sci. USA 113, 8139–8143 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Watson, M. D. et al. Emergence of the nematic electronic state in FeSe. Phys. Rev. B 91, 155106 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Kissikov, T. et al. Uniaxial strain control of spin-polarization in multicomponent nematic order of BaFe2As2. Nat. Commun. 9, 1058 (2018).

    ADS  Article  Google Scholar 

  19. 19.

    Mirri, C. et al. Origin of the resistive anisotropy in the electronic nematic phase of BaFe2As2 revealed by optical spectroscopy. Phys. Rev. Lett. 115, 107001 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    ADS  Article  Google Scholar 

  21. 21.

    Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Hicks, C. W., Barber, M. E., Edkins, S. D., Brodsky, D. O. & Mackenzie, A. P. Piezoelectric-based apparatus for strain tuning. Rev. Sci. Instrum. 85, 065003 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    Chu, J.-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).

    ADS  Article  Google Scholar 

  24. 24.

    Schmidt, J. et al. Nematicity in the superconducting mixed state of strain detwinned underdoped Ba(Fe1–xCox)2As2. Phys. Rev. B 99, 064515 (2019).

    ADS  Article  Google Scholar 

  25. 25.

    Hicks, C. W. et al. Strong increase of T c of Sr2RuO4 under both tensile and compressive strain. Science 344, 283–285 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Steppke, A. et al. Strong peak in T c of Sr2RuO4 under uniaxial pressure. Science 355, eaaf9398 (2017).

    Article  Google Scholar 

  27. 27.

    Tam, D. W. et al. Uniaxial pressure effect on the magnetic ordered moment and transition temperatures in BaFe2−xTxAs2 (T = Co,Ni). Phys. Rev. B 95, 060505 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Dhital, C. et al. Effect of uniaxial strain on the structural and magnetic phase transitions in BaFe2As2. Phys. Rev. Lett. 108, 087001 (2012).

    ADS  Article  Google Scholar 

  29. 29.

    Kuo, H.-H. et al. Magnetoelastically coupled structural, magnetic, and superconducting order parameters in BaFe2(As1−xPx)2. Phys. Rev. B 86, 134507 (2012).

    ADS  Article  Google Scholar 

  30. 30.

    Fujii, C. et al. Anisotropic Grüneisen parameter and diverse order parameter fluctuations in iron-based superconductor Ba(Fe1–xCox)2As2. J. Phys. Soc. Jpn 87, 074710 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    Wieteska, A. et al. Uniaxial strain tuning of superconductivity in 2H-NbSe2. Preprint at https://arxiv.org/abs/1903.05253 (2019).

  32. 32.

    Kroeger, D. M., Easton, D. S., DasGupta, A., Koch, C. C. & Scarbrough, J. O. The effect of strain upon the scaling law for flux pinning in bronze process Nb3Sn. J. Appl. Phys. 51, 2184–2192 (1980).

    ADS  Article  Google Scholar 

  33. 33.

    Rothberg, B. D., Nabarro, F. R. N., Stephen, M. J. & McLachlan, D. S. in Low Temperature Physics-LT 13 528–531 (Springer, 1974).

  34. 34.

    Wang, S. et al. Strain derivatives of T c in HgBa2CuO4+δ: the CuO2 plane alone is not enough. Phys. Rev. B 89, 024515 (2014).

    ADS  Article  Google Scholar 

  35. 35.

    Bud’ko, S. L., Guimpel, J., Nakamura, O., Maple, M. B. & Schuller, I. K. Uniaxial pressure dependence of the superconducting critical temperature in RBa2Cu3O7–δ high-T c oxides. Phys. Rev. B 46, 1257–1260 (1992).

    ADS  Article  Google Scholar 

  36. 36.

    Gantmakher, V. F. & Dolgopolov, V. T. Superconductor–insulator quantum phase transition. Phys. Usp. 53, 1–49 (2010).

    ADS  Article  Google Scholar 

  37. 37.

    Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315–333 (1997).

    ADS  Article  Google Scholar 

  38. 38.

    Kapitulnik, A., Kivelson, S. A. & Spivak, B. Colloquium: anomalous metals: failed superconductors. Rev. Mod. Phys. 91, 011002 (2019).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank X. Xu, D. Cobden, B. Spivak, S. Kivelson and C. Xu for discussions. This work was mainly supported by NSF MRSEC at UW (DMR-1719797) and the Gordon and Betty Moore Foundation’s EPiQS Initiative, grant GBMF6759 to J.-H.C. The development of strain instrumentation is supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award DE-SC0019443. The integration of X-ray diffraction with in situ strain is supported by the Air Force Office of Scientific Research Young Investigator Program under grant FA9550-17-1-0217 and the Defense University Research Instrumentation Program Award FA9550-19-1-0180. J.L. acknowledges support from the National Science Foundation under grant no. DMR-1848269. J.-H.C. acknowledges the support of the David and Lucile Packard Foundation and the State of Washington funded Clean Energy Institute.

Author information

Affiliations

Authors

Contributions

P.M., J.S., J.M., Q.J. and Z.L. grew the samples. P.M., Q.J. and J.S. did the experiments. P.R., J.-W.K. and J.L. helped conceive and design the X-ray diffraction measurements at the Advanced Photon Source. P.W. performed the finite-element analysis. P.M. analysed the data. J.-H.C. supervised the project. All authors contributed extensively to the interpretation of the data and the writing of the manuscript.

Corresponding author

Correspondence to Jiun-Haw Chu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Samuel Lederer, Takasada Shibauchi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Tables 1–3.

Source data

Source Data Fig. 1

xT phase diagram data, zero-strain ρ versus T data, ρ versus T data under various compressive and tensile strains.

Source Data Fig. 2

Real and imaginary parts of the susceptometer coil mutual inductance versus strain, ρ versus strain for various temperatures, orthorhombicity and resistivity versus strain (T = 8 K), Tε phase diagram data.

Source Data Fig. 3

ρ versus T data for various strains, Tc versus B2g strain, normalized Tc versus B2g strain, α and –2m66 versus doping.

Source Data Fig. 4

Normalized response of superconductivity to strain for various compounds.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malinowski, P., Jiang, Q., Sanchez, J.J. et al. Suppression of superconductivity by anisotropic strain near a nematic quantum critical point. Nat. Phys. (2020). https://doi.org/10.1038/s41567-020-0983-9

Download citation

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing