Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Universal scaling laws rule explosive growth in human cancers

Abstract

Most physical and other natural systems are complex entities that are composed of a large number of interacting individual elements. It is a surprising fact that they often obey the so-called scaling laws that relate an observable quantity to a measure of the size of the system. Here, we describe the discovery of universal superlinear metabolic scaling laws in human cancers. This dependence underpins increasing tumour aggressiveness, owing to evolutionary dynamics, that leads to an explosive growth as the disease progresses. We validated this dynamic using longitudinal volumetric data of different histologies from large cohorts of patients with cancer. To explain our observations we tested complex, biologically inspired mathematical models that describe the key processes that govern tumour growth. Our models predict that the emergence of superlinear allometric scaling laws is an inherently three-dimensional phenomenon. Moreover, the scaling laws that we identified allowed us to define a set of metabolic metrics with prognostic value, which adds clinical utility to our findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A superlinear scaling law governs glucose uptake and proliferation in human cancers.
Fig. 2: Explosive longitudinal volumetric dynamics of untreated malignant human tumours.
Fig. 3: Stochastic mesoscale models with evolutionary dynamics lead to superlinear scaling laws in silico.
Fig. 4: Scaling laws allow for classification of patients with cancer into prognostic groups.

Similar content being viewed by others

Data availability

Source data for Figs. 1,2,4 are available for this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The mesoscopic simulator code is available for download from http://matematicas.uclm.es/molab/DiscrSimulator1.zip. Source data are provided with this paper.

References

  1. Kleiber, M. Body size and metabolism. Hilgardia 6, 315–351 (1932).

    Article  Google Scholar 

  2. West, G. Scale: The Universal Laws of Growth Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies and Companies (Penguin, 2017).

  3. West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    Article  Google Scholar 

  4. Savage, V. M. et al. The predominance of quarter-power scaling in biology. Funct. Ecol. 18, 257–282 (2004).

    Article  Google Scholar 

  5. Reich, P. B., Tjoelker, M. G., Machado, J. L. & Oleksyn, J. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).

    Article  ADS  Google Scholar 

  6. Enquist, B. J. et al. Biological scaling: does the exception prove the rule? Nature 445, E9–10 (2007).

    Article  ADS  Google Scholar 

  7. Guiot, C., Degiorgis, P. G., Delsanto, P. P., Gabriele, P. & Deisboeck, T. S. Does tumour growth follow a universal law? J. Theor. Biol. 225, 147–151 (2003).

    Article  Google Scholar 

  8. Herman, A. B., Savage, V. M. & West, G. B. A quantitative theory of solid tumor growth, metabolic rate and vascularization. PLoS ONE 6, e22973 (2011).

    Article  ADS  Google Scholar 

  9. Milotti, E., Vyshemirsky, V., Sega, M., Stella, S. & Chignola, R. Metabolic scaling in solid tumours. Sci. Rep. 3, 1938 (2013).

    Article  ADS  Google Scholar 

  10. Palm, W. & Thompson, C. B. Nutrient acquisition strategies in mammalian cells. Nature 546, 234–242 (2017).

    Article  ADS  Google Scholar 

  11. Zhu, J. & Thompson, C. B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 20, 436–450 (2019).

    Article  Google Scholar 

  12. De Grado, T. R., Reiman, R. E., Price, D. T., Wang, S. & Coleman, R. E. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J. Nucl. Med. 43, 92–96 (2002).

    Google Scholar 

  13. Barwick, T., Bencherif, B., Mountz, J. M. & Avril, N. Molecular PET and PET/CT imaging of tumour cell proliferation using F-18 fluoro-L-thymidine: a comprehensive evaluation. Nucl. Med. Commun. 30, 908–917 (2009).

    Article  Google Scholar 

  14. DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl Acad. Sci. USA 107, 12941–12945 (2010).

    Article  ADS  Google Scholar 

  15. De Palma, M., Biziato, D. & Petrova, T. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017).

    Article  Google Scholar 

  16. West, G. B., Brown, J. H. & Enquist, B. J. A general model for ontogenetic growth. Nature 413, 628–631 (2001).

    Article  ADS  Google Scholar 

  17. Gerlee, P. The model muddle: in search of tumor growth laws. Cancer Res. 73, 2407–2411 (2013).

    Article  Google Scholar 

  18. Rodriguez-Brenes, I. A., Komarova, N. L. & Wodarz, D. Tumor growth dynamics: insights into evolutionary processes. Trends Ecol. Evol. 28, 597–604 (2013).

    Article  Google Scholar 

  19. Benzekry, S. et al. Classical mathematical models for description and prediction of experimental tumour growth. PLoS Comput. Biol. 10, e1003800 (2014).

    Article  Google Scholar 

  20. Talkington, A. & Durret, R. Estimating tumour growth rates in vivo. Bull. Math. Biol. 77, 1934–1954 (2015).

    Article  MathSciNet  Google Scholar 

  21. Gengenbacher, N., Singhal, M. & Augustin, H. G. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat. Rev. Cancer 17, 751–765 (2017).

    Article  Google Scholar 

  22. Mandonnet, E. et al. Continuous growth of mean tumour diameter in a subset of grade II gliomas. Ann. Neurol. 53, 524–528 (2003).

    Article  Google Scholar 

  23. Van Havenbergh, T., Carvalho, G., Tatagiba, M., Plets, C. & Samii, M. Natural history of petroclival meningiomas. Neurosurgery 52, 55–64 (2003).

    Google Scholar 

  24. Heesterman, B. L. et al. Mathematical models for tumour growth and the reduction of overtreatment. J. Neurol. Surg. B 80, 72–78 (2019).

    Google Scholar 

  25. Nguyen, D. X. et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138, 51–62 (2009).

    Article  Google Scholar 

  26. Gargini, R. et al. The IDH-TAU-EGFR triad defines the neovascular landscape of diffuse gliomas. Sci. Transl. Med. 12, eaax1501 (2020).

    Article  Google Scholar 

  27. Hallastschek, O. & Fisher, D. S. Acceleration of evolutionary spread by long-range dispersal. Proc. Natl Acad. Sci. USA 111, E4911–E4919 (2014).

    Article  ADS  Google Scholar 

  28. Deforet, M., Carmona-Fontaine, C., Korolev, K. S. & Xavier, J. B. Evolution at the edge of expanding populations. Am. Nat. 194, 291–305 (2019).

    Article  Google Scholar 

  29. Waclaw, B. et al. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525, 261–264 (2015).

    Article  ADS  Google Scholar 

  30. Komarova, N. L. Spatial interactions and cooperation can change the speed of evolution of complex phenotypes. Proc. Natl Acad. Sci. USA 111, 10789–10795 (2014).

    Article  ADS  Google Scholar 

  31. Durrett, R., Foo, J., Leder, K., Mayberry, J. & Michor, F. Evolutionary dynamics of tumor progression with random fitness values. Theor. Popul. Biol. 78, 54–66 (2010).

    Article  Google Scholar 

  32. McFarland, C. D., Mirny, L. A. & Korolev, K. S. Tug-of-war between driver and passenger mutations in cancer and other adaptive processes. Proc. Natl Acad. Sci. USA 111, 15138–15143 (2014).

    Article  ADS  Google Scholar 

  33. Robertson-Tessi, M., Gillies, R. J., Gatenby, R. A. & Anderson, A. R. Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes. Cancer Res. 75, 1567–1579 (2015).

    Article  Google Scholar 

  34. Clark, K. et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Dig. Imag. 26, 1045–1057 (2013).

    Article  Google Scholar 

  35. Vallieres, M. et al. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 7, 10117 (2017).

    Article  ADS  Google Scholar 

  36. Kostakoglu, L. et al. A phase II study of 3′-Deoxy-3′-18F-Fluorothymidine PET in the assessment of early response of breast cancer to neoadjuvant chemotherapy: results from ACRIN 6688. J. Nucl. Med. 56, 1681–1689 (2015).

    Article  Google Scholar 

  37. Detterbeck, F. C., Boffa, D. J., Kim, A. W. & Tanoue, L. T. The eighth edition lung cancer stage classification. Chest 151, 193–203 (2017).

    Article  Google Scholar 

  38. Pérez-Beteta, J. et al. Tumour surface regularity at MR imaging predicts survival and response to surgery in patients with glioblastoma. Radiology 288, 218–225 (2018).

    Article  Google Scholar 

  39. Pallud, J. et al. Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas. Ann. Neurol. 60, 380–383 (2006).

    Article  Google Scholar 

  40. Valiente, M. et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156, 1002–1016 (2014).

    Article  Google Scholar 

  41. Harrell, F. E. et al. Evaluating the yield of medical tests. JAMA 247, 2543–2546 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the James S. McDonnell Foundation 21st Century Science Initiative in Mathematical and Complex Systems Approaches for Brain Cancer (collaborative awards 220020560 and 220020450), Ministerio de Economía y Competitividad/FEDER, Spain (grant no. MTM2015-71200-R), Junta de Comunidades de Castilla-La Mancha (grant no. SBPLY/17/180501/000154). Research in the Brain Metastasis Group is supported by MINECO grant MINECO-Retos SAF2017-89643-R (M.V.), Bristol-Myers Squibb Melanoma Research Alliance Young Investigator Award 2017 (498103) (M.V.), Beug Foundation’s Prize for Metastasis Research 2017 (M.V.), Fundación Ramón Areces (CIVP19S8163) (M.V.), Worldwide Cancer Research (19-0177) (M.V.), H2020-FETOPEN (828972) (M.V.), Fundació La Marató de tv3 (141), Clinic and Laboratory Integration Program CRI Award 2018 (54545) (M.V.), AECC Coordinated Translational Groups 2017 (GCTRA16015SEOA) (M.V.), LAB AECC 2019 (LABAE19002VALI) (M.V.), La Caixa INPhINIT Fellowship (LCF/BQ/IN17/11620028) (P.G.-G.), La Caixa-Severo Ochoa International PhD Program Fellowship (LCF/BQ/SO16/52270014) (L.Z.). M.V. is a member of the European Molecular Biology Organization Young Investigators programme (4053). We would like to acknowledge J. Cervera and J. C. Peñalver from the IVO Foundation (Valencia, Spain).

Author information

Authors and Affiliations

Authors

Contributions

V.M.P.-G. designed the research, collected and processed data, performed the fittings, and developed and simulated the mathematical models. J.J.B. collected data, processed data, performed fitting tasks and developed the automatic segmentation algorithm. J.P.-B. collected and processed data. O.L.-T. collected and processed data and fitted the longitudinal volumetric data. M.V., L.Z., P.G.-G., P.S.-G., E.H.-S.M. and R.H. performed the experiments in the animal models. E.A., P.S., M.M., D.A., A.O.d.M., A.A.R., F.V. and A.F.H.M. collected data. G.A.J.L. collected and processed data. M.P.-C. processed data. G.F.C., J.J.B., J.J., J.B.-B., Y.A. and A.M. developed and simulated the mathematical models. D.M.-G. performed the survival studies. A.M.G.V. designed the research, and collected and processed data. V.M.P.-G. and G.F.C. drafted the manuscript. All of the authors edited and approved the final manuscript.

Corresponding author

Correspondence to Víctor M. Pérez-García.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Two human cancer animal models display superlinear growth dynamics.

Two human cancer animal models display superlinear growth dynamics. Group 1 (G1) data correspond to untreated nude mice injected with the human lung adenocarcinoma brain tropic model H2030-BrM (see methods). Group data (G2) correspond to primary glioma cells (L0627) expressing the luciferase reporter gene injected into the brain of nude mice (see methods). Bioluminiscence images for G1 for some mice are shown in panel A. Total tumour mass growth curves for G1 showed superlinear dynamics with best fitting exponent β = 1.25 (for G2 it was β = 1.3). (B, upper panel). Errors relative to best fit were found to be substantially smaller with the optimal superlinear fits than for both the linear and sublinear fits (exponents 1 and 0.75 respectively) (B, lower panel).

Supplementary information

Supplementary Information

Supplementary text, figures, tables and references.

Reporting summary

Source data

Source Data Fig. 1

Data of TLA versus MTV for the different tumour histologies considered.

Source Data Fig. 2

Data of tumour volume versus time for the different patient groups and tumour histologies shown in the figure.

Source Data Fig. 4

Survival data for the different groups and tumour histologies shown in the figure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-García, V.M., Calvo, G.F., Bosque, J.J. et al. Universal scaling laws rule explosive growth in human cancers. Nat. Phys. 16, 1232–1237 (2020). https://doi.org/10.1038/s41567-020-0978-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-0978-6

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics