Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unscrambling entanglement through a complex medium

Abstract

The transfer of quantum information through a noisy environment is a central challenge in the fields of quantum communication, imaging and nanophotonics. In particular, high-dimensional quantum states of light enable quantum networks with significantly higher information capacities and noise robustness as compared with qubits. However, although qubit entanglement has been distributed over large distances through free space and fibre, the transport of high-dimensional entanglement is hindered by the complexity of the channel, which encompasses effects such as free-space turbulence or mode mixing in multimode waveguides. Here, we demonstrate the transport of six-dimensional spatial-mode entanglement through a 2-m-long, commercial multimode fibre with 84.4% fidelity. We show how the entanglement can itself be used to measure the transmission matrix of the complex medium, allowing the recovery of quantum correlations that were initially lost. Using a unique property of entangled states, the medium is rendered transparent to entanglement by carefully ‘scrambling’ the photon that did not enter it, rather than unscrambling the photon that did. Our work overcomes a primary challenge in the fields of quantum communication and imaging, and opens a new pathway towards the control of complex scattering processes in the quantum regime.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Basic principle.
Fig. 2: Experimental set-up and measurement holograms.
Fig. 3: Entanglement before and after a complex medium.
Fig. 4: High-dimensional entanglement unscrambled through a complex medium.

Data availability

Data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. 1.

    Rotter, S. & Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 89, 015005 (2017).

    ADS  Google Scholar 

  2. 2.

    Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Exp. 4, 260–270 (2013).

    Google Scholar 

  3. 3.

    Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photon. 9, 529–535 (2015).

    ADS  Google Scholar 

  4. 4.

    Turtaev, S. et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light Sci. Appl. 7, 92 (2018).

    ADS  Google Scholar 

  5. 5.

    Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADS  Google Scholar 

  6. 6.

    Leedumrongwatthanakun, S. et al. Programmable linear quantum networks with a multimode fibre. Nat. Photon. 14, 139–142 (2020).

    ADS  Google Scholar 

  7. 7.

    Defienne, H., Barbieri, M., Walmsley, I. A., Smith, B. J. & Gigan, S. Two-photon quantum walk in a multimode fiber. Sci. Adv. 2, e1501054 (2016).

    ADS  Google Scholar 

  8. 8.

    Wolterink, T. A. W. et al. Programmable two-photon quantum interference in 103 channels in opaque scattering media. Phys. Rev. A 93, 53817 (2016).

    ADS  Google Scholar 

  9. 9.

    Defienne, H., Reichert, M. & Fleischer, J. W. Adaptive quantum optics with spatially entangled photon pairs. Phys. Rev. Lett. 121, 233601 (2018).

    ADS  Google Scholar 

  10. 10.

    Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

    ADS  Google Scholar 

  11. 11.

    Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    ADS  Google Scholar 

  12. 12.

    Acin, A. et al. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007).

    ADS  Google Scholar 

  13. 13.

    Krenn, M., Malik, M., Erhard, M. & Zeillinger, A. Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes. Philos. Trans. R. Soc. A 375, 20150442 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  14. 14.

    Bavaresco, J. et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat. Phys. 14, 1032–1037 (2017).

    Google Scholar 

  15. 15.

    Erhard, M., Malik, M., Krenn, M. & Zeilinger, A. Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits. Nat. Photon. 12, 759–764 (2018).

    ADS  Google Scholar 

  16. 16.

    Schneeloch, J., Tison, C. C., Fanto, M. L., Alsing, P. M. & Howland, G. A. Quantifying entanglement in a 68-billion-dimensional quantum state space. Nat. Commun. 10, 2785 (2019).

    ADS  Google Scholar 

  17. 17.

    Mirhosseini, M. et al. High-dimensional quantum cryptography with twisted light. N. J. Phys. 17, 33033 (2015).

    MathSciNet  Google Scholar 

  18. 18.

    Islam, N. T., Lim, C. C. W., Cahall, C., Kim, J. & Gauthier, D. J. Provably secure and high-rate quantum key distribution with time-bin qudits. Sci. Adv. 3, e1701491 (2017).

    ADS  Google Scholar 

  19. 19.

    Ecker, S. et al. Overcoming noise in entanglement distribution. Phys. Rev. X 9, 041042 (2019).

    Google Scholar 

  20. 20.

    Zhu, F., Tyler, M., Valencia, N. H., Malik, M. & Leach, J. Are high-dimensional entangled states robust to noise? Preprint at https://arxiv.org/pdf/1908.08943v1.pdf (2019).

  21. 21.

    Brida, G., Genovese, M. & Berchera, I. R. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010).

    ADS  Google Scholar 

  22. 22.

    Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

    ADS  Google Scholar 

  23. 23.

    Vertesi, T., Pironio, S. & Brunner, N. Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 60401 (2010).

    ADS  Google Scholar 

  24. 24.

    Bavaresco, J. et al. Most incompatible measurements for robust steering tests. Phys. Rev. A 96, 22110 (2017).

    ADS  Google Scholar 

  25. 25.

    Yin, J. et al. Satellite-based entanglement distribution over 1,200 kilometers. Science 356, 1140–1144 (2017).

    Google Scholar 

  26. 26.

    Inagaki, T., Matsuda, N., Tadanaga, O., Asobe, M. & Takesue, H. Entanglement distribution over 300 km of fiber. Opt. Exp. 21, 23241–23249 (2013).

    ADS  Google Scholar 

  27. 27.

    Cao, H. et al. Distribution of high-dimensional orbital angular momentum entanglement over a 1-km few-mode fiber. Optica 7, 232–237 (2020).

    ADS  Google Scholar 

  28. 28.

    Jamiołkowski, A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3, 275–278 (1972).

    ADS  MathSciNet  MATH  Google Scholar 

  29. 29.

    D’Ariano, G. M. & Lo Presti, P. Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. Phys. Rev. Lett. 86, 4195–4198 (2001).

    ADS  Google Scholar 

  30. 30.

    Konrad, T. et al. Evolution equation for quantum entanglement. Nat. Phys. 4, 99–102 (2007).

    Google Scholar 

  31. 31.

    Altepeter, J. B. et al. Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003).

    ADS  Google Scholar 

  32. 32.

    Ndagano, B. et al. Characterizing quantum channels with non-separable states of classical light. Nat. Phys. 13, 397–402 (2017).

    Google Scholar 

  33. 33.

    Carpenter, J., Eggleton, B. J. & Schröder, J. Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre. Nat. Photon. 9, 751–757 (2015).

    ADS  Google Scholar 

  34. 34.

    Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nat. Commun. 1, 81 (2010).

    ADS  Google Scholar 

  35. 35.

    Klyshko, D. N. A simple method of preparing pure states of an optical field, of implementing the Einstein–Podolsky–Rosen experiment, and of demonstrating the complementarity principle. Sov. Phys. Usp. 31, 74–85 (1988).

    ADS  Google Scholar 

  36. 36.

    Peeters, W. H., Moerman, J. J. D. & van Exter, M. P. Observation of two-photon speckle patterns. Phys. Rev. Lett. 104, 173601 (2010).

    ADS  Google Scholar 

  37. 37.

    Franson, J. D. Nonlocal cancellation of dispersion. Phys. Rev. A 45, 3126–3132 (1992).

    ADS  Google Scholar 

  38. 38.

    Black, A. N. et al. Quantum nonlocal aberration cancellation. Phys. Rev. Lett. 123, 143603 (2019).

    ADS  Google Scholar 

  39. 39.

    Wootters, W. & Fields, B. Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989).

    ADS  MathSciNet  Google Scholar 

  40. 40.

    Friis, N., Vitagliano, G., Malik, M. & Huber, M. Entanglement certification from theory to experiment. Nat. Rev. Phys. 1, 72–87 (2019).

    Google Scholar 

  41. 41.

    Malik, M. et al. Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016).

    ADS  Google Scholar 

  42. 42.

    Valencia, N. H. et al. High-dimensional pixel entanglement: efficient generation and certification. Preprint at https://arxiv.org/pdf/2004.04994.pdf (2020).

  43. 43.

    Bouchard, F. et al. Measuring azimuthal and radial modes of photons. Opt. Exp. 26, 31925–31941 (2018).

    ADS  Google Scholar 

  44. 44.

    Fontaine, N. K. et al. Laguerre–Gaussian mode sorter. Nat. Commun. 10, 1865 (2019).

    ADS  Google Scholar 

  45. 45.

    Wollman, E. E. et al. Kilopixel array of superconducting nanowire single-photon detectors. Opt. Exp. 27, 35279–35289 (2019).

    ADS  Google Scholar 

  46. 46.

    Mounaix, M. et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett. 116, 253901 (2016).

    ADS  Google Scholar 

  47. 47.

    Epping, M., Kampermann, H., Macchiavello, C. & Bruß, D. Multi-partite entanglement can speed up quantum key distribution in networks. New J. Phys. 19, 093012 (2017).

    ADS  MathSciNet  Google Scholar 

  48. 48.

    Kang, S. et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves. Nat. Photon. 9, 253–258 (2015).

    ADS  Google Scholar 

  49. 49.

    Diamanti, E., Lo, H.-K., Qi, B. & Yuan, Z. Practical challenges in quantum key distribution. npj Quantum Inf. 2, 16025 (2016).

    Google Scholar 

  50. 50.

    Moreau, P.-A., Toninelli, E., Gregory, T. & Padgett, M. J. Imaging with quantum states of light. Nat. Rev. Phys. 1, 367–380 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank M. Huber, N. Friis, D. Phillips, S. Leedumrongwatthanakun and A. Fedrizzi for helpful discussions. This work was made possible by financial support from the QuantERA ERA-NET Co-fund (FWF Project I3773-N36) and the UK Engineering and Physical Sciences Research Council (EP/P024114/1). H.D. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 840958.

Author information

Affiliations

Authors

Contributions

M.M. conceived the research and supervised the project. M.M. and H.D. designed the experiment. N.H.V. and S.G. performed the experiment. All authors developed theoretical methods, analysed the data and contributed to writing the manuscript.

Corresponding authors

Correspondence to Natalia Herrera Valencia or Mehul Malik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 ‘Scrambled’ correlations of the output state \(\left|{\psi }_{\text{MMF}}\right\rangle\).

Two-photon coincidence counts in the 7-dimensional Pixel basis \({\{\left|m\right\rangle ,\left|n\right\rangle \}}_{m,n}\), and its 7 mutually unbiased bases \({\{\left|{f}_{m}\right\rangle ,\left|{f}_{n}\right\rangle \}}_{m,n}\) at the output of the multimode fibre. For this set of measurements we obtained a fidelity to the maximally entangled state of \(\tilde{F}(\rho_T ,{\psi }^{+})=5.4\pm 1.0 \%\), that is, no entanglement can be certified.

Extended Data Fig. 2 S matrix measurement.

Examples of computer-generated holograms displayed on the SLMs corresponding to (a) Alice and (b) Bob, when measuring a given matrix element \({R}_{mn}^{\theta }\). Changing the relative phase θ, we obtain matrices Rθ that allow us to calculate the elements Smn through Eq. (17). The absolute value of the matrix S is shown in (c).

Extended Data Fig. 3 E matrix measurement.

Examples of computer-generated holograms displayed on the SLMs corresponding to (a) Alice and (b) Bob, when measuring matrix elements \({R}_{m}^{\theta }\). We change the relative phase θ via a phase-stepping process to determine the diagonal elements (m = n) of the matrix E. The absolute value of this diagonal matrix is shown in (c).

Supplementary information

Supplementary Information

Supplementary discussion and methods, Figs. 1–6, equations (1)–(23) and Tables 1 and 2.

Source data

Source Data Fig. 2

Transmission matrix.

Source Data Fig. 3

Correlations measured in two bases in the absence and presence of the MMF.

Source Data Fig. 4

Recovered correlations in the Pixel and seven ‘tilted’ Pixel bases.

Source Data Extended Data Fig. 1

Scrambled correlations in eight mutually unbiased bases in the presence of the MMF.

Source Data Extended Data Fig. 2

Absolute value of S matrix.

Source Data Extended Data Fig. 3

Absolute value of E matrix.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valencia, N.H., Goel, S., McCutcheon, W. et al. Unscrambling entanglement through a complex medium. Nat. Phys. 16, 1112–1116 (2020). https://doi.org/10.1038/s41567-020-0970-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing