Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unconventional free charge in the correlated semimetal Nd2Ir2O7


Nd2Ir2O7 is a correlated semimetal with the pyrochlore structure, in which competing spin–orbit coupling and electron–electron interactions are believed to induce a time-reversal symmetry-broken Weyl semimetal phase characterized by pairs of topologically protected Dirac points at the Fermi energy1,2,3,4. However, the emergent properties in these materials are far from clear, and exotic new states of matter have been conjectured5,6,7. Here, we demonstrate optically that, at low temperatures, the free carrier spectral weight is proportional to T2, where T is the temperature, as expected for massless Dirac electrons. However, we do not observe the corresponding T3 term in the specific heat. That the system is not in a Fermi liquid state is further corroborated by the charge carrier scattering rate approaching critical damping and the progressive opening of a correlation-induced gap at low temperatures. These observations cannot be reconciled within the framework of band theory of electron-like quasiparticles and point towards the effective decoupling of the charge transport from the single particle sector.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental transport and optical conductivity data of Nd2Ir2O7.
Fig. 2: Comparison and analysis of the free charge spectral weight, entropy and low-energy optical conductivity of Nd2Ir2O7.
Fig. 3: Power-law analysis of the interband transitions of Nd2Ir2O7.

Data availability

The datasets generated and analysed during the current study are available in ref. 43. These will be preserved for 10 years. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    ADS  Article  Google Scholar 

  2. 2.

    Tian, Z. et al. Field-induced quantum metal–insulator transition in the pyrochlore iridate Nd2Ir2O7. Nat. Phys. 12, 134–138 (2016).

    Article  Google Scholar 

  3. 3.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Ohtsuki, T. et al. Strain-induced spontaneous Hall effect in an epitaxial thin film of a Luttinger semimetal. Proc. Natl Acad. Sci. USA 116, 8803–8808 (2019).

    ADS  Article  Google Scholar 

  5. 5.

    Pesin, D. & Balents, L. Mott physics and band topology in materials with strong spin–orbit interaction. Nat. Phys. 6, 376–381 (2010).

    Article  Google Scholar 

  6. 6.

    Moon, E.-G., Xu, C., Kim, Y. B. & Balents, L. Non-Fermi-liquid and topological states with strong spin–orbit coupling. Phys. Rev. Lett. 111, 206401 (2013).

    ADS  Article  Google Scholar 

  7. 7.

    Morimoto, T. & Nagaosa, N. Weyl Mott insulator. Sci. Rep. 6, 19853 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    Kim, D. J., Xia, J. & Fisk, Z. Topological surface state in the Kondo insulator samarium hexaboride. Nat. Mater. 13, 466–470 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Lai, H.-H., Grefe, S. E., Paschen, S. & Si, Q. Weyl–Kondo semimetal in heavy-fermion systems. Proc. Natl Acad. Sci. USA 115, 93–97 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Xu, Y., Yue, C., Weng, H. & Dai, X. Heavy Weyl fermion state in CeRu4Sn6. Phys. Rev. X 7, 011027 (2017).

    Google Scholar 

  14. 14.

    Kondo, T. et al. Quadratic Fermi node in a 3D strongly correlated semimetal. Nat. Commun. 6, 10042 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Cheng, B. et al. Dielectric anomalies and interactions in the three-dimensional quadratic band touching Luttinger semimetal Pr2Ir2O7. Nat. Commun. 8, 2097 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Tomiyasu, K. et al. Emergence of magnetic long-range order in frustrated pyrochlore Nd2Ir2O7 with metal–insulator transition. J. Phys. Soc. Jpn 81, 034709 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Guo, H. et al. Magnetic order in the pyrochlore iridate Nd2Ir2O7 probed by muon spin relaxation. Phys. Rev. B 88, 060411 (2013).

    ADS  Article  Google Scholar 

  18. 18.

    Sagayama, H. et al. Determination of long-range all-in-all-out ordering of Ir4+ moments in a pyrochlore iridate Eu2Ir2O7 by resonant X-ray diffraction. Phys. Rev. B 87, 100403 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Ma, E. Y. et al. Mobile metallic domain walls in an all-in-all-out magnetic insulator. Science 350, 538–541 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    Donnerer, C. et al. All-in-all-out magnetic order and propagating spin waves in Sm2Ir2O7. Phys. Rev. Lett. 117, 037201 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Chun, S. H. et al. Magnetic excitations across the metal–insulator transition in the pyrochlore iridate Eu2Ir2O7. Phys. Rev. Lett. 120, 177203 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Go, A., Witczak-Krempa, W., Jeon, G. S., Park, K. & Kim, Y. B. Correlation effects on 3D topological phases: from bulk to boundary. Phys. Rev. Lett. 109, 066401 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    Witczak-Krempa, W. & Kim, Y. B. Topological and magnetic phases of interacting electrons in the pyrochlore iridates. Phys. Rev. B 85, 045124 (2012).

    ADS  Article  Google Scholar 

  24. 24.

    Witczak-Krempa, W., Go, A. & Kim, Y. B. Pyrochlore electrons under pressure, heat, and field: shedding light on the iridates. Phys. Rev. B 87, 155101 (2013).

    ADS  Article  Google Scholar 

  25. 25.

    Shinaoka, H., Hoshino, S., Troyer, M. & Werner, P. Phase diagram of pyrochlore iridates: all-in-all-out magnetic ordering and non-Fermi-liquid properties. Phys. Rev. Lett. 115, 156401 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Ueda, K. et al. Magnetic-field induced multiple topological phases in pyrochlore iridates with Mott criticality. Nat. Commun. 8, 15515 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Ueda, K. et al. Variation of charge dynamics in the course of metal–insulator transition for pyrochlore-type Nd2Ir2O7. Phys. Rev. Lett. 109, 136402 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    Ueda, K., Fujioka, J. & Tokura, Y. Variation of optical conductivity spectra in the course of bandwidth-controlled metal–insulator transitions in pyrochlore iridates. Phys. Rev. B 93, 245120 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Sushkov, A. B. et al. Optical evidence for a Weyl semimetal state in pyrochlore Eu2Ir2O7. Phys. Rev. B 92, 241108 (2015).

    ADS  Article  Google Scholar 

  30. 30.

    Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

    ADS  Article  Google Scholar 

  31. 31.

    Tabert, C. J. & Carbotte, J. P. Optical conductivity of Weyl semimetals and signatures of the gapped semimetal phase transition. Phys. Rev. B 93, 085442 (2016).

    ADS  Article  Google Scholar 

  32. 32.

    Tabert, C. J., Carbotte, J. P. & Nicol, E. J. Optical and transport properties in three-dimensional Dirac and Weyl semimetals. Phys. Rev. B 93, 085426 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Lide, D. R. CRC Handbook of Chemistry and Physics 71st edn (CRC Press, 1990).

  34. 34.

    Hosur, P., Parameswaran, S. A. & Vishwanath, A. Charge transport in Weyl semimetals. Phys. Rev. Lett. 108, 046602 (2012).

    ADS  Article  Google Scholar 

  35. 35.

    Zaanen, J. Planckian dissipation, minimal viscosity and the transport in cuprate strange metals. SciPost Phys. 6, 061 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    Watahiki, M. et al. Crystalline electric field study in the pyrochlore Nd2Ir2O7 with metal–insulator transition. J. Phys. Conf. Ser. 320, 012080 (2011).

    Article  Google Scholar 

  37. 37.

    Phillips, P. Mottness. Ann. Phys. 321, 1634–1650 (2006).

    ADS  Article  Google Scholar 

  38. 38.

    Wang, R., Go, A. & Millis, A. Weyl rings and enhanced susceptibilities in pyrochlore iridates: kp analysis of cluster dynamical mean-field theory results. Phys. Rev. B 96, 195158 (2017).

    ADS  Article  Google Scholar 

  39. 39.

    Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

    ADS  Article  Google Scholar 

  40. 40.

    Ishikawa, J. J., O’Farrell, E. C. T. & Nakatsuji, S. Continuous transition between antiferromagnetic insulator and paramagnetic metal in the pyrochlore iridate Eu2Ir2O7. Phys. Rev. B 85, 245109 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    Chen, G. & Hermele, M. Magnetic orders and topological phases from fd exchange in pyrochlore iridates. Phys. Rev. B 86, 235129 (2012).

    ADS  Article  Google Scholar 

  42. 42.

    Ruminy, M. et al. First-principles calculation and experimental investigation of lattice dynamics in the rare-earth pyrochlores R2Ti2O7 (R = Tb, Dy, Ho). Phys. Rev. B 93, 214308 (2016).

  43. 43.

    Optics, Transport, Specific Heat and Magnetic Susceptibility of the Correlated Semimetal Nd2Ir2O7 (Yareta, 2020);

Download references


D.v.d.M. acknowledges insightful discussions with D. Abanin and N. Nagaosa. This project was supported by the Swiss National Science Foundation (project no. 200020-179157). This work is partially supported by CREST (JPMJCR18T3), the Japan Science and Technology Agency (JST), by Grants-in-Aids for Scientific Research on Innovative Areas (15H05882 and 15H05883) from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by Grants-in-Aid for Scientific Research (19H00650). Work at JHU was supported through the Institute for Quantum Matter, an EFRC funded by the US DOE, Office of BES (DE-SC0019331).

Author information




K.W., B.X., C.W.R., N.B., B.M. and J.T. performed experiments. Y.Q., T.O., B.C. and S.N. prepared samples. K.W., N.B., B.M. and D.v.d.M. analysed data. N.P.A. and D.v.d.M. planned the project. K.W. and D.v.d.M. wrote the manuscript with input and comments from all other authors.

Corresponding author

Correspondence to D. van der Marel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Reflectance spectra.

Solid curves: Near normal incidence reflectivity, R=r2, of Nd2Ir2O7 for selected temperatures. Dotted curves below 50 cm−1: Extrapolations using simultaneous Drude–Lorentz fitting to the reflectance spectra and the ellipsometric data beween 4000 and 18000 cm−1 of Extended Data Fig. 2. a, Between 30 and 300 K. b, Between 6 and 30 K.

Extended Data Fig. 2 Ellipsometric data between 4000 and 18000 cm−1.

a, Real and imaginary part of the dielectric function at room temperature measured using spectroscopic ellipsometry at θ = 65 degrees with the surface normal. b, Phase of the normal incidence reflection coefficient using the Fresnel equation \(| {\rm{r}}| {{\rm{e}}}^{{\rm{i}}\phi }=(1-\sqrt{\varepsilon })/(1+\sqrt{\varepsilon })\). c, Absolute square of the reflection coefficient.

Extended Data Fig. 3 Thermodynamic properties of the Nd 4f states.

Model calculation of the exchange potential at the Nd sites Δ(T), entropy per primitive cell sf(T), and specific heat per primitive cell cf(T) (see Methods). a,c,e,f, Δ0 =6.5 K and TN=37 K. b,d,g, Δ0 =15 K and TN =30 K.

Extended Data Fig. 4 Comparison of the contributions to the specific heat per primitive cell.

Experimental specific heat per primitive cell of Nd2Ir2O7. Red curve: Calculated phonon contribution (see Methods). Olive curve: Calculated contribution of the itinerant Ir 5d band electrons (see Methods). Brown curve: The contribution from the localized Nd 4f electrons (see Methods).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Xu, B., Rischau, C.W. et al. Unconventional free charge in the correlated semimetal Nd2Ir2O7. Nat. Phys. 16, 1194–1198 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing