Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Implementation of a canonical phase measurement with quantum feedback


Much of modern metrology and communication technology encodes information in electromagnetic waves, typically as an amplitude or phase. Although current hardware can perform near-ideal measurements of photon number or field amplitude, the ability to perform an ideal phase measurement is still lacking, even in principle. In this work, we implement a single-shot canonical phase measurement on a one-photon wave packet, which surpasses the current standard of heterodyne detection and is optimal for single-shot phase estimation. By applying quantum feedback to a Josephson parametric amplifier, our system adaptively changes its measurement basis during photon arrival and allows us to validate the detector’s performance by tracking the quantum state of the photon source. These results demonstrate that quantum feedback can both enhance the precision of a detector and enable it to measure new classes of physical observables.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Experimental implementation.
Fig. 2: Measurement back-action and quantum trajectories.
Fig. 3: Back-action and measurement validation.
Fig. 4: Phase-estimation performance.

Data availability

Source data are available for this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Busch, P., Lahti, P., Pellonpaa, J.-P. & Ylinen, K. Are number and phase complementary observables? J. Phys. A 34, 5923 (2001).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    London, F. Über die Jacobischen transformationen der quantenmechanik. Z. Phys. 37, 915 (1926).

    ADS  Article  Google Scholar 

  3. 3.

    Susskind, L. & Glogower, J. Quantum mechanical phase and time operator. Phys. Phys. Fiz. 1, 49 (1964).

    MathSciNet  Google Scholar 

  4. 4.

    Yonezawa, H. et al. Quantum-enhanced optical-phase tracking. Science 337, 1514–1517 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Wheatley, T. et al. Adaptive optical phase estimation using time-symmetric quantum smoothing. Phys. Rev. Lett. 104, 093601 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    Armen, M. A., Au, J. K., Stockton, J. K., Doherty, A. C. & Mabuchi, H. Adaptive homodyne measurement of optical phase. Phys. Rev. Lett. 89, 133602 (2002).

    ADS  Article  Google Scholar 

  7. 7.

    Iwasawa, K. et al. Quantum-limited mirror-motion estimation. Phys. Rev. Lett. 111, 163602 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    Wiseman, H. M. Adaptive phase measurements of optical modes: going beyond the marginal Q distribution. Phys. Rev. Lett. 75, 4587 (1995).

    ADS  Article  Google Scholar 

  9. 9.

    Koch, J. et al. Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS  Article  Google Scholar 

  10. 10.

    Murch, K. et al. Cavity-assisted quantum bath engineering. Phys. Rev. Lett. 109, 183602 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Pozza, N. D., Wiseman, H. M. & Huntington, E. H. Deterministic preparation of superpositions of vacuum plus one photon by adaptive homodyne detection: experimental considerations. New J. Phys. 17, 013047 (2015).

    Article  Google Scholar 

  12. 12.

    Castellanos-Beltran, M., Irwin, K., Hilton, G., Vale, L. & Lehnert, K. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat. Phys. 4, 929–931 (2008).

    Article  Google Scholar 

  13. 13.

    Macklin, C. et al. A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    Murch, K. W., Weber, S. J., Macklin, C. & Siddiqi, I. Observing single quantum trajectories of a superconducting quantum bit. Nature 502, 211–214 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Campagne-Ibarcq, P. et al. Observing quantum state diffusion by heterodyne detection of fluorescence. Phys. Rev. X 6, 011002 (2016).

    Google Scholar 

  16. 16.

    Wiseman, H. & Killip, R. Adaptive single-shot phase measurements: a semiclassical approach. Phys. Rev. A 56, 944 (1997).

    ADS  Article  Google Scholar 

  17. 17.

    Eddins, A. et al. High-efficiency measurement of an artificial atom embedded in a parametric amplifier. Phys. Rev. X 9, 011004 (2019).

    Google Scholar 

  18. 18.

    Kerckhoff, J., Lalumière, K., Chapman, B. J., Blais, A. & Lehnert, K. On-chip superconducting microwave circulator from synthetic rotation. Phys. Rev. Appl. 4, 034002 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Sarovar, M. & Whaley, K. B. Adaptive homodyne phase discrimination and qubit measurement. Phys. Rev. A 76, 052316 (2007).

    ADS  Article  Google Scholar 

  20. 20.

    Grimsmo, A. L., Combes, J. & Baragiola, B. Q. Quantum computing with rotation-symmetric bosonic codes. Phys. Rev. X 10, 011058 (2020).

    Google Scholar 

  21. 21.

    Oreshkov, O. & Brun, T. A. Weak measurements are universal. Phys. Rev. Lett. 95, 110409 (2005).

    ADS  Article  Google Scholar 

Download references


We thank E. Flurin, J.M. Kreikebaum and V.V. Ramasesh for assistance, and MIT Lincoln labs for fabrication of the travelling wave parametric amplifier. This work was supported by the Army Research Office under Grant Number W911NF15-1-0496. L.S.M. was supported by National Science Foundation Grant Number 1106400 and the Berkeley Fellowship for Graduate Study.

Author information




L.S.M. and H.M.W. conceived of the experiment with assistance from S.H.-G. L.S.M., S.H.-G. and W.P.L. constructed the experiment. S.H.-G. fabricated the qubit and Josephson parametric amplifier, and W.P.L. programmed the FPGA. L.S.M. and W.P.L. conducted the experiment. L.S.M. analysed the data and wrote the manuscript with assistance from W.P.L. All work was carried out under the supervision of H.M.W. and I.S.

Corresponding author

Correspondence to Leigh S. Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Naoki Yamamoto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary information and Figs. 1–6.

Source data

Source Data Fig. 1

x and y axes of Fig. 1c.

Source Data Fig. 3

x and y axes of Fig. 3b, histogram data of Fig. 3d.

Source Data Fig. 4

Histogram data (x and y axes) for Fig. 4a and Fig. 4c.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martin, L.S., Livingston, W.P., Hacohen-Gourgy, S. et al. Implementation of a canonical phase measurement with quantum feedback. Nat. Phys. 16, 1046–1049 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing