Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polarizing an antiferromagnet by optical engineering of the crystal field

An Author Correction to this article was published on 30 June 2020

This article has been updated


Strain engineering is widely used to manipulate the electronic and magnetic properties of complex materials. For example, the piezomagnetic effect provides an attractive route to control magnetism with strain. In this effect, the staggered spin structure of an antiferromagnet is decompensated by breaking the crystal field symmetry, which induces a ferrimagnetic polarization. Piezomagnetism is especially appealing because, unlike magnetostriction, it couples strain and magnetization at linear order, and allows for bi-directional control suitable for memory and spintronics applications. However, its use in functional devices has so far been hindered by the slow speed and large uniaxial strains required. Here we show that the essential features of piezomagnetism can be reproduced with optical phonons alone, which can be driven by light to large amplitudes without changing the volume and hence beyond the elastic limits of the material. We exploit nonlinear, three-phonon mixing to induce the desired crystal field distortions in the antiferromagnet CoF2. Through this effect, we generate a ferrimagnetic moment of 0.2 μB per unit cell, nearly three orders of magnitude larger than achieved with mechanical strain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Piezomagnetic effect in CoF2.
Fig. 2: Breaking symmetry with phonons.
Fig. 3: Driving degenerate infrared phonons in CoF2.
Fig. 4: Time-resolved magneto-optical measurements.
Fig. 5: Characterization of the pump-induced state.
Fig. 6: Pump-induced magnetization dynamics.

Similar content being viewed by others

Data availability

Source data are available for Figs. 46. All other data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

Change history


  1. Dzialoshinskii, I. E. The problem of piezomagnetism. Sov. Phys. JETP 6, 621–622 (1958).

    ADS  Google Scholar 

  2. Borovik-Romanov, A. S. Piezomagnetism, linear magnetostriction and magnetooptic effect. Ferroelectrics 162, 153–159 (1994).

    Article  Google Scholar 

  3. Oelkrug, D. Absorption spectra and ligand field parameters of tetragonal 3d-transition metal fluorides. In Structure and Bonding Vol. 9, 1–26 (Springer, 1971).

  4. O’Toole, N. J. & Streltsov, V. A. Synchrotron X-ray analysis of the electron density in CoF2 and ZnF2. Acta Crystallogr. B 57, 128–135 (2001).

    Article  Google Scholar 

  5. Stout, J. W. & Matarrese, L. M. Magnetic anisotropy of the iron-group fluorides. Rev. Mod. Phys. 25, 338–343 (1953).

    Article  ADS  Google Scholar 

  6. Erickson, R. A. Neutron diffraction studies of antiferromagnetism in manganous fluoride and some isomorphous compounds. Phys. Rev. 90, 779–785 (1953).

    Article  ADS  Google Scholar 

  7. Borovik-Romanov, A. S. Piezomagnetism in the antiferromagnetic fluorides of cobalt and manganese. Sov. Phys. JETP 11, 786–793 (1960).

    Google Scholar 

  8. Moriya, T. Piezomagnetism in CoF2. J. Phys. Chem. Solids 11, 73–77 (1959).

    Article  ADS  Google Scholar 

  9. Abrabam, A. & Pryce, M. H. L. The theory of paramagnetic resonance in hydrated cobalt salts. Proc. R. Soc. Lond. A 206, 173–191 (1997).

    ADS  MATH  Google Scholar 

  10. Figgis, B. N. & Lewis, J. in Progress in Inorganic Chemistry, Vol. 6 (ed. Cotton, F. A.) 37–239 (Wiley, 1964).

  11. von Hoegen, A., Mankowsky, R., Fechner, M., Först, M. & Cavalleri, A. Probing the interatomic potential of solids with strong-field nonlinear phononics. Nature 555, 79–82 (2018).

    Article  ADS  Google Scholar 

  12. Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Article  Google Scholar 

  13. Juraschek, D. M., Fechner, M. & Spaldin, N. A. Ultrafast structure switching through nonlinear phononics. Phys. Rev. Lett. 118, 054101 (2017).

    Article  ADS  Google Scholar 

  14. Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2016).

    Article  Google Scholar 

  15. Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

    Article  ADS  Google Scholar 

  16. Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    Article  ADS  Google Scholar 

  17. Radaelli, P. G. Breaking symmetry with light: ultrafast ferroelectricity and magnetism from three-phonon coupling. Phys. Rev. B 97, 085145 (2018).

    Article  ADS  Google Scholar 

  18. Liu, B. et al. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz. Opt. Lett. 42, 129–131 (2016).

    Article  ADS  Google Scholar 

  19. Balkanski, M., Moch, P. & Parisot, G. Infrared lattice‐vibration spectra in NiF2, CoF2, and FeF2. J. Chem. Phys. 44, 940–944 (1966).

    Article  ADS  Google Scholar 

  20. Giordano, J. & Benoit, C. Infrared spectra of iron, zinc and magnesium fluorides. I. Analysis of results. J. Phys. C 21, 2749–2770 (1988).

    Article  ADS  Google Scholar 

  21. Wong, Y. H., Scarpace, F. L., Pfeifer, C. D. & Yen, W. M. Circular and magnetic circular dichroism of some simple antiferromagnetic fluorides. Phys. Rev. B 9, 3086–3096 (1974).

    Article  ADS  Google Scholar 

  22. Kharchenko, N., Mil’ner, A., Eremenko, V. & Bibik, A. Magnetic circular dichroism in antiferromagnetic cobalt fluoride. Zh. Eksp. Teor. Fiz. 94, 340–349 (1988).

    Google Scholar 

  23. Gaydamak, T. N. et al. Acoustopiezomagnetism and the elastic moduli of CoF2. Low. Temp. Phys. 40, 524–530 (2014).

    Article  ADS  Google Scholar 

  24. Kharchenko, N. F. The linear magneto-optic effect as a manifestation of a higher order magnetoelectric effect. Ferroelectrics 162, 173–189 (1994).

    Article  Google Scholar 

  25. Bolz, R. E. CRC Handbook of Tables for Applied Engineering Science 2nd edn (CRC, 1973).

  26. Kimel, A. V. et al. Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5, 727–731 (2009).

    Article  Google Scholar 

  27. Maehrlein, S. F. et al. Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation. Sci. Adv. 4, eaar5164 (2018).

    Article  ADS  Google Scholar 

  28. Atxitia, U., Nieves, P. & Chubykalo-Fesenko, O. Landau–Lifshitz–Bloch equation for ferrimagnetic materials. Phys. Rev. B 86, 104414 (2012).

    Article  ADS  Google Scholar 

  29. Atxitia, U., Hinzke, D. & Nowak, U. Fundamentals and applications of the Landau–Lifshitz–Bloch equation. J. Phys. D 50, 033003 (2017).

    Article  ADS  Google Scholar 

  30. Song, C. et al. How to manipulate magnetic states of antiferromagnets. Nanotechnology 29, 112001 (2018).

    Article  ADS  Google Scholar 

  31. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  32. Liu, Z. et al. Antiferromagnetic piezospintronics. Adv. Electron. Mater. 5, 1900176 (2019).

    Article  Google Scholar 

  33. Chu, J. H., Kuo, H. H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    Article  ADS  Google Scholar 

  34. Hicks, C. W. et al. Strong increase of Tc of Sr2RuO4 under both tensile and compressive strain. Science 344, 283–285 (2014).

    Article  ADS  Google Scholar 

  35. Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

    Article  ADS  Google Scholar 

  36. Juraschek, D. M., Fechner, M., Balatsky, A. V. & Spaldin, N. A. Dynamical multiferroicity. Phys. Rev. Mater. 1, 014401 (2017).

    Article  Google Scholar 

  37. Baruchel, J., Schlenker, M. & Barbara, B. 180° antiferromagnetic domains in MnF2 by neutron topography. J. Magn. Magn. Mater. 15–18, 1510–1512 (1980).

    Article  ADS  Google Scholar 

  38. Van Der Ziel, J. P. & Guggenheim, H. J. Optical spectrum of CoF2. Phys. Rev. 166, 479–487 (1968).

    Article  ADS  Google Scholar 

  39. Zimring, L. J. & Stout, J. W. Polarized crystal spectra of CoF2 and Co0.06Zn0.94F2. J. Chem. Phys. 51, 4197–4209 (1969).

    Article  ADS  Google Scholar 

Download references


We thank J. Chen for help preparing the samples and assistance with the optical experiment. This work received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC (grant agreement no. 319286 (QMAC)) and the Cluster of Excellence ‘CUI: Advanced Imaging of Matter’ of the Deutsche Forschungsgemeinschaft (DFG), EXC 2056, project ID 390715994. Work done at the University of Oxford was funded by EPSRC grant no. EP/M020517/1, entitled Oxford Quantum Materials Platform Grant. A.S.D. was supported by a fellowship from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations



P.G.R. and A.C. planned the project together with A.S.D. and M. Först. A.S.D. designed and performed the experiments with help from B.L., T.F.N. and M. Först. A.S.D. analysed the experimental data. M. Fechner carried out the first-principles calculations. M. Fechner, A.S.D. and P.G.R. developed the phenomenological model. D.P. prepared the samples. A.S.D. and A.C. wrote the manuscript with feedback from all co-authors.

Corresponding authors

Correspondence to Ankit S. Disa or Andrea Cavalleri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, Figs. 1–6, Tables 1–3 and refs. 1–25.

Source data

Source Data Fig. 4

Data for measured Faraday rotation and circular dichroism plotted in Fig. 4.

Source Data Fig. 5

Data for measured temperature, field and frequency dependences plotted in Fig. 5.

Source Data Fig. 6

Data for induced magnetization from experiment and theory plotted in Fig. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Disa, A.S., Fechner, M., Nova, T.F. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing