Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Predicting many properties of a quantum system from very few measurements


Predicting the properties of complex, large-scale quantum systems is essential for developing quantum technologies. We present an efficient method for constructing an approximate classical description of a quantum state using very few measurements of the state. This description, called a ‘classical shadow’, can be used to predict many different properties; order \({\mathrm{log}}\,(M)\) measurements suffice to accurately predict M different functions of the state with high success probability. The number of measurements is independent of the system size and saturates information-theoretic lower bounds. Moreover, target properties to predict can be selected after the measurements are completed. We support our theoretical findings with extensive numerical experiments. We apply classical shadows to predict quantum fidelities, entanglement entropies, two-point correlation functions, expectation values of local observables and the energy variance of many-body local Hamiltonians. The numerical results highlight the advantages of classical shadows relative to previously known methods.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: An illustration for constructing a classical representation, the classical shadow, of a quantum system from randomized measurements.
Fig. 2: Predicting quantum fidelities using classical shadows (Clifford measurements) and NNQST.
Fig. 3: Predicting two-point correlation functions using classical shadows (Pauli measurements) and NNQST.
Fig. 4: Predicting entanglement Rényi entropies using classical shadows (Pauli measurements) and the Brydges et al. protocol.
Fig. 5: Application of classical shadows (Pauli measurements) to variational quantum simulation of the lattice Schwinger model.

Data availability

Source data are available for this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

Source code for an efficient implementation of the proposed procedure is available at


  1. 1.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article  Google Scholar 

  2. 2.

    Cramer, M. et al. Efficient quantum state tomography. Nat. Commun. 1, 149 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    Carrasquilla, J., Torlai, G., Melko, R. G. & Aolita, L. Reconstructing quantum states with generative models. Nat. Mach. Intell. 1, 155–161 (2019).

    Article  Google Scholar 

  4. 4.

    Torlai, G. et al. Neural-network quantum state tomography. Nat. Phys. 14, 447–450 (2018).

    Article  Google Scholar 

  5. 5.

    Aaronson, S. Shadow tomography of quantum states. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018) 325–338 (ACM, 2018)

  6. 6.

    Aaronson, S. & Rothblum, G. N. Gentle measurement of quantum states and differential privacy. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC 2019) 322–333 (ACM, 2019).

  7. 7.

    Guta, M., Kahn, J., Kueng, R. J. & Tropp, J. A. Fast state tomography with optimal error bounds. J. Phys. A 53, 204001 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Gottesman, D. Stabilizer Codes and Quantum Error Correction PhD thesis, Caltech (1997).

  9. 9.

    Fano, R. M. Transmission of Information: A Statistical Theory of Communications (MIT Press, 1961).

  10. 10.

    Jerrum, M. R., Valiant, L. G. & Vazirani, V. V. Random generation of combinatorial structures from a uniform distribution. Theoret. Comput. Sci. 43, 169–188 (1986).

    MathSciNet  Article  Google Scholar 

  11. 11.

    Nemirovsky, A. S. & Yudin, D. B. Problem Complexity and Method Efficiency in Optimization (Wiley-Interscience, 1983).

  12. 12.

    Greenberger, D. M., Horne, M. A. & Zeilinger, A. in Bell’s Theorem, Quantum Theory and Conceptions of the Universe. Fundamental Theories of Physics Vol. 37 (ed. Kafatos, M.) 69–72 (Springer, 1989).

  13. 13.

    Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory.J. Math. Phys. 43, 4452–4505 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Flammia, S. T. & Liu, Y.-K. Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett. 106, 230501 (2011).

    ADS  Article  Google Scholar 

  15. 15.

    Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    Weilenmann, M., Dive, B., Trillo, D., Aguilar, E. A. & Navascués, M. Entanglement detection beyond measuring fidelities. Phys. Rev. Lett. 124, 200502 (2020).

    ADS  Article  Google Scholar 

  17. 17.

    Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Kokail, C. et al. Self-verifying variational quantum simulation of lattice models. Nature 569, 355–360 (2019).

    ADS  Article  Google Scholar 

  19. 19.

    Hoeffding, W. in Breakthroughs in Statistics 308–334 (Springer, 1992).

  20. 20.

    Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).

    ADS  Article  Google Scholar 

  21. 21.

    Renes, J. M., Blume-Kohout, R., Scott, A. J. & Caves, C. M. Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Dasgupta, C. & Ma, S.-k Low-temperature properties of the random Heisenberg antiferromagnetic chain. Phys. Rev. B 22, 1305 (1980).

    ADS  Article  Google Scholar 

  24. 24.

    Ma, S.-k, Dasgupta, C. & Hu, C.-k Random antiferromagnetic chain. Phys. Rev. Lett. 43, 1434 (1979).

    ADS  Article  Google Scholar 

  25. 25.

    Bonet-Monroig, X., Babbush, R. & O’Brien, T. E. Nearly optimal measurement scheduling for partial tomography of quantum states. Preprint at (2019).

  26. 26.

    Raghavan, P. Probabilistic construction of deterministic algorithms: approximating packing integer programs.J. Comput. Syst. Sci. 37, 130–143 (1988).

    MathSciNet  Article  Google Scholar 

  27. 27.

    Spencer, J. Ten lectures on the probabilistic method. In CBMS-NSF Regional Conference Series in Applied Mathematics 2nd edn, Vol. 64 (SIAM, 1994).

  28. 28.

    Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017).

    Article  Google Scholar 

  30. 30.

    Paini, M. & Kalev, A. An approximate description of quantum states. Preprint at (2019).

Download references


We thank V. Albert, F. Brandão, M. Endres, I. Roth, J. Tropp, T. Vidick, M. Weilenmann and J. Wright for valuable input and inspiring discussions. L. Aolita and G. Carleo provided helpful advice regarding presentation. Our gratitude extends, in particular, to J. Iverson, who helped us in devising a numerical sampling strategy for toric code ground states. We also thank M. Paini and A. Kalev for informing us about their related work30, where they discussed succinct classical ‘snapshots’ of quantum states obtained from randomized local measurements. H.-Y.H. is supported by the Kortschak Scholars Program. R.K. acknowledges funding provided by the Office of Naval Research (award no. N00014-17-1-2146) and the Army Research Office (award no. W911NF121054). J.P. acknowledges funding from ARO-LPS, NSF and DOE. The Institute for Quantum Information and Matter is an NSF Physics Frontiers Center.

Author information




H.-Y.H. and R.K. developed the theoretical aspects of this work. H.-Y.H. conducted the numerical experiments and wrote the open-source code. J.P. conceived the applications of classical shadows. H.-Y.H., R.K. and J.P. wrote the manuscript.

Corresponding author

Correspondence to Hsin-Yuan Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Yi-Kai Liu and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, HY., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from very few measurements. Nat. Phys. 16, 1050–1057 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing