Repeated quantum error detection in a surface code

Abstract

The realization of quantum error correction is an essential ingredient for reaching the full potential of fault-tolerant universal quantum computation. Using a range of different schemes, logical qubits that are resistant to errors can be redundantly encoded in a set of error-prone physical qubits. One such scalable approach is based on the surface code. Here we experimentally implement its smallest viable instance, capable of repeatedly detecting any single error using seven superconducting qubits—four data qubits and three ancilla qubits. Using high-fidelity ancilla-based stabilizer measurements, we initialize the cardinal states of the encoded logical qubit with an average logical fidelity of 96.1%. We then repeatedly check for errors using the stabilizer readout and observe that the logical quantum state is preserved with a lifetime and a coherence time longer than those of any of the constituent qubits when no errors are detected. Our demonstration of error detection with its resulting enhancement of the conditioned logical qubit coherence times is an important step, indicating a promising route towards the realization of quantum error correction in the surface code.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Surface code implemented with seven qubits.
Fig. 2: Seven-qubit device.
Fig. 3: Stabilizer measurements of the data qubits.
Fig. 4: Preparation of logical states.
Fig. 5: Repeated quantum error detection.

Data availability

The authors declare that the data supporting the findings of this work are available online at the ETH Zurich repository for research data https://doi.org/10.3929/ethz-b-000410090.

Code availability

The codes used for experimental control are available from the corresponding author on reasonable request.

References

  1. 1.

    Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).

    ADS  Google Scholar 

  2. 2.

    Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    ADS  Google Scholar 

  3. 3.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS  Google Scholar 

  4. 4.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Google Scholar 

  5. 5.

    Cory, D. G. et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998).

    ADS  Google Scholar 

  6. 6.

    Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004).

    ADS  Google Scholar 

  7. 7.

    Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011).

    ADS  Google Scholar 

  8. 8.

    Lanyon, B. P. et al. Measurement-based quantum computation with trapped ions. Phys. Rev. Lett. 111, 210501 (2013).

    ADS  Google Scholar 

  9. 9.

    Linke, N. M. et al. Fault-tolerant quantum error detection. Sci. Adv. 3, e1701074 (2017).

    ADS  Google Scholar 

  10. 10.

    Yao, X.-C. et al. Experimental demonstration of topological error correction. Nature 482, 489–494 (2012).

    ADS  Google Scholar 

  11. 11.

    Bell, B. A. et al. Experimental demonstration of a graph state quantum error-correction code. Nat. Commun. 5, 3658 (2014).

    ADS  Google Scholar 

  12. 12.

    Cramer, J. et al. Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nat. Commun. 7, 11526 (2016).

    ADS  Google Scholar 

  13. 13.

    Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).

    ADS  Google Scholar 

  14. 14.

    Shankar, S. et al. Autonomously stabilized entanglement between two superconducting quantum bits. Nature 504, 419–422 (2013).

    ADS  Google Scholar 

  15. 15.

    Ristè, D. et al. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nat. Commun. 6, 6983 (2015).

    ADS  Google Scholar 

  16. 16.

    Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    ADS  Google Scholar 

  17. 17.

    Córcoles, A. D. et al. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6, 6979 (2015).

    ADS  Google Scholar 

  18. 18.

    Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    ADS  Google Scholar 

  19. 19.

    Ristè, D. et al. Deterministic entanglement of superconducting qubits by parity measurement and feedback. Nature 502, 350–354 (2013).

    ADS  Google Scholar 

  20. 20.

    Negnevitsky, V. et al. Repeated multiqubit readout and feedback with a mixed-species trapped-ion register. Nature 563, 527–531 (2018).

    ADS  Google Scholar 

  21. 21.

    Andersen, C. K. et al. Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits. npj Quantum Inf. 5, 69 (2019).

    ADS  Google Scholar 

  22. 22.

    Bultink, C. C. et al. Protecting quantum entanglement from leakage and qubit errors via repetitive parity measurements. Sci. Adv. 6, eaay3050 (2020).

    ADS  Google Scholar 

  23. 23.

    Nigg, D. et al. Quantum computations on a topologically encoded qubit. Science 345, 302–305 (2014).

    ADS  MathSciNet  MATH  Google Scholar 

  24. 24.

    Gong, M.et al. Experimental verification of five-qubit quantum error correction with superconducting qubits. Preprint at http://arXiv.org/abs/1907.04507 (2019).

  25. 25.

    Takita, M., Cross, A. W., Córcoles, A. D., Chow, J. M. & Gambetta, J. M. Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Phys. Rev. Lett. 119, 180501 (2017).

    ADS  Google Scholar 

  26. 26.

    Hu, L. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 15, 503–508 (2019).

    Google Scholar 

  27. 27.

    Campagne-Ibarcq, P. et al. A stabilized logical quantum bit encoded in grid states of a superconducting cavity. Preprint at http://arXiv.org/abs/1907.12487 (2019).

  28. 28.

    Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. (N. Y.) 303, 2–30 (2003).

    ADS  MathSciNet  MATH  Google Scholar 

  29. 29.

    Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  30. 30.

    Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

    ADS  Google Scholar 

  31. 31.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    ADS  Google Scholar 

  32. 32.

    Lidar, D. A. & Brun, T. A. Quantum Error Correction (Cambridge Univ. Press, 2013).

  33. 33.

    Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

    ADS  MathSciNet  Google Scholar 

  34. 34.

    Groen, J. P. et al. Partial-measurement backaction and nonclassical weak values in a superconducting circuit. Phys. Rev. Lett. 111, 090506 (2013).

    ADS  Google Scholar 

  35. 35.

    Schmitt, V. et al. Multiplexed readout of transmon qubits with Josephson bifurcation amplifiers. Phys. Rev. A 90, 062333 (2014).

    ADS  Google Scholar 

  36. 36.

    Jeffrey, E. et al. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett. 112, 190504 (2014).

    ADS  Google Scholar 

  37. 37.

    Heinsoo, J. et al. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10, 034040 (2018).

    ADS  Google Scholar 

  38. 38.

    Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).

    ADS  Google Scholar 

  39. 39.

    Rol, M. A. et al. Fast, high-fidelity conditional-phase gate exploiting leakage interference in weakly anharmonic superconducting qubits. Phys. Rev. Lett. 123, 120502 (2019).

    ADS  Google Scholar 

  40. 40.

    Versluis, R. et al. Scalable quantum circuit and control for a superconducting surface code. Phys. Rev. Appl. 8, 034021 (2017).

    ADS  Google Scholar 

  41. 41.

    Johnson, J. E. et al. Heralded state preparation in a superconducting qubit. Phys. Rev. Lett. 109, 050506 (2012).

    ADS  Google Scholar 

  42. 42.

    Ristè, D., van Leeuwen, J. G., Ku, H.-S., Lehnert, K. W. & DiCarlo, L. Initialization by measurement of a superconducting quantum bit circuit. Phys. Rev. Lett. 109, 050507 (2012).

    ADS  Google Scholar 

  43. 43.

    Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS  Google Scholar 

  44. 44.

    Reed, M. D. et al. Fast reset and suppressing spontaneous emission of a superconducting qubit. Appl. Phys. Lett. 96, 203110 (2010).

    ADS  Google Scholar 

  45. 45.

    Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. Eur. Phys. J. Quantum Technol. 6, 2 (2019).

    Google Scholar 

  46. 46.

    Takita, M. et al. Demonstration of weight-four parity measurements in the surface code architecture. Phys. Rev. Lett. 117, 210505 (2016).

    ADS  Google Scholar 

  47. 47.

    Bacon, D. Operator quantum error-correcting subsystems for self-correcting quantum memories. Phys. Rev. A 73, 012340 (2006).

    ADS  Google Scholar 

  48. 48.

    Bombin, H. & Martin-Delgado, M. A. Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006).

    ADS  Google Scholar 

  49. 49.

    Chamberland, C., Zhu, G., Yoder, T. J., Hertzberg, J. B. & Cross, A. W. Topological and subsystem codes on low-degree graphs with flag qubits. Phys. Rev. X 10, 011022 (2020).

    Google Scholar 

  50. 50.

    Li, M., Miller, D., Newman, M., Wu, Y. & Brown, K. R. 2D compass codes. Phys. Rev. X 9, 021041 (2019).

    Google Scholar 

  51. 51.

    Macklin, C. et al. A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    ADS  Google Scholar 

  52. 52.

    Johansson, J. R., Nation, P. D. & Nori, F. QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184, 1234–1240 (2013).

    ADS  Google Scholar 

  53. 53.

    Wiseman, H. & Milburn, G. Quantum Measurement and Control (Cambridge Univ. Press, 2010).

Download references

Acknowledgements

We are grateful for feedback from K. Brown and A. Darmawan. We acknowledge contributions to the measurement set-up from S. Storz, F. Swiadek and T. Zellweger. We acknowledge financial support by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via the US Army Research Office grant W911NF-16-1-0071, by the National Centre of Competence in Research Quantum Science and Technology (NCCR QSIT), a research instrument of the Swiss National Science Foundation (SNSF), by the EU Flagship on Quantum Technology H2020-FETFLAG-2018-03 project 820363 OpenSuperQ, by the SNFS R’Equip grant 206021-170731 and by ETH Zurich. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA or the US Government.

Author information

Affiliations

Authors

Contributions

C.K.A. designed the device and A.R., S.K., G.J.N. and M.G fabricated the device. C.K.A., A.R., S.L. and N.L. developed the experimental control software. C.K.A., A.R., S.K. and N.L. installed the experimental set-up. C.K.A., A.R. and S.L. characterized and calibrated the device and the experimental set-up. C.K.A. carried out the main experiment and analysed the data. C.K.A. performed the numerical simulations. C.E. and A.W. supervised the work. C.K.A., A.R. and S.L. prepared the figures for the manuscript. C.K.A. wrote the manuscript with input from all coauthors.

Corresponding author

Correspondence to Christian Kraglund Andersen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experimental setup.

Experimental setup described in Methods.

Supplementary information

Supplementary Information

Supplementary Information.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andersen, C.K., Remm, A., Lazar, S. et al. Repeated quantum error detection in a surface code. Nat. Phys. 16, 875–880 (2020). https://doi.org/10.1038/s41567-020-0920-y

Download citation

Further reading