Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Repulsive photons in a quantum nonlinear medium


The ability to control strongly interacting light quanta (photons) is of central importance in quantum science and engineering1,2,3,4,5. Recently it was shown that such strong interactions can be engineered in specially prepared quantum optical systems6,7,8,9,10. Here, we demonstrate a method for coherent control of strongly interacting photons, extending quantum nonlinear optics into the domain of repulsive photons. This is achieved by coherently coupling photons to several atomic states, including strongly interacting Rydberg levels in a cold Rubidium gas. Using this approach we demonstrate both repulsive and attractive interactions between individual photons and characterize them by the measured two- and three-photon correlation functions. For the repulsive case, we demonstrate signatures of interference and self ordering from three-photon measurements. These observations open a route to study strongly interacting dissipative systems and quantum matter composed of light such as a crystal of individual photons11,12.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Photon interaction engineering.
Fig. 2: Correlation functions showing repulsion and attraction.
Fig. 3: Repulsive interactions and phase.
Fig. 4: Three-photon correlations and onset of crystal-like behaviour.

Data availability

Source data are available for this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Hartmann, M., Brandao, F. & Plenio, M. Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006).

    Article  Google Scholar 

  2. 2.

    Greentree, A., Tahan, C., Cole, J. & Hollenberg, L. Quantum phase transitions of light. Nat. Phys. 2, 856–861 (2006).

    Article  Google Scholar 

  3. 3.

    Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019).

    ADS  Article  Google Scholar 

  4. 4.

    Clark, L. W. et al. Interacting Floquet polaritons. Nature 571, 532–536 (2010).

    Article  Google Scholar 

  5. 5.

    Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    Friedler, I., Petrosyan, D., Fleischhauer, M. & Kurizki, G. Long-range interactions and entanglement of slow single-photon pulses. Phys. Rev. A 72, 043803 (2005).

    ADS  Article  Google Scholar 

  7. 7.

    Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    ADS  Article  Google Scholar 

  8. 8.

    Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Hacker, B., Welte, S., Rempe, G. & Ritter, S. A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Busche, H. et al. Contactless nonlinear optics mediated by long-range Rydberg interactions. Nat. Phys. 13, 655–658 (2017).

    Article  Google Scholar 

  11. 11.

    Chang, D. et al. Crystallization of strongly interacting photons in a nonlinear optical fibre. Nat. Phys. 4, 884–889 (2008).

    Article  Google Scholar 

  12. 12.

    Otterbach, J., Moos, M., Muth, D. & Fleischhauer, M. Wigner crystallization of single photons in cold Rydberg ensembles. Phys. Rev. Lett. 111, 113001 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Liang, Q. Y. et al. Observation of three-photon bound states in a quantum nonlinear medium. Science 359, 783–786 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Chang, D., Vuletic, V. & Lukin, M. Quantum nonlinear optics - photon by photon. Nat. Photon. 8, 685–694 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

    ADS  Article  Google Scholar 

  17. 17.

    Gorshkov, A. V., Otterbach, J., Fleischhauer, M., Pohl, T. & Lukin, M. D. Photon–photon interactions via Rydberg blockade. Phys. Rev. Lett. 107, 133602 (2011).

    ADS  Article  Google Scholar 

  18. 18.

    Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Stiesdal, N. et al. Observation of three-body correlations for photons coupled to a Rydberg superatom. Phys. Rev. Lett. 121, 103601 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Tiarks, D., Baur, S., Schneider, K., Dürr, S. & Rempe, G. Single-photon transistor using a Förster resonance. Phys. Rev. Lett. 113, 053602 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H. & Hofferberth, S. Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Sommer, A., Büchler, H. P. & Simon, J. Quantum crystals and Laughlin droplets of cavity Rydberg polaritons. Preprint at (2015).

  23. 23.

    Bienias, P. et al. Scattering resonances and bound states for strongly interacting Rydberg polaritons. Phys. Rev. A 90, 053804 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Lukin, M. D., Yelin, S. F., Fleischhauer, M. & Scully, M. O. Quantum interference effects induced by interacting dark resonances. Phys. Rev. A 60, 3225–3228 (1999).

    ADS  Article  Google Scholar 

  25. 25.

    Mahmoudi, M., Fleischhaker, R., Sahrai, M. & Evers, J. Group velocity control in the ultraviolet domain via interacting dark-state resonances. J. Phys. B 41, 025504 (2008).

    ADS  Article  Google Scholar 

  26. 26.

    Duan, L. M., Cirac, I. & Zoller, P. Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001).

    ADS  Article  Google Scholar 

  27. 27.

    Schauß, P. et al. Observation of spatially ordered structures in a two-dimensional Rydberg gas. Nature 491, 87–91 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    Schauß, P. et al. Crystallization in Ising quantum magnets. Science 347, 1455–1458 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Nogrette, F. et al. Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries. Phys. Rev. X 4, 021034 (2014).

    Google Scholar 

  30. 30.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    ADS  MathSciNet  Article  Google Scholar 

Download references


We acknowledge helpful conversations with T. Pohl and C. Murray. We also acknowledge help with control electronics from Z. Zhang.

Author information




The experiment and analysis were carried out by S.H.C., A.V.V., W.X. and B.J. Theoretical modelling was performed by L.Z. and A.V.V. All work was supervised by M.D.L. and V.V. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Mikhail D. Lukin or Vladan Vuletić.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1 and discussion.

Source data

Source Data Fig. 2

Two-photon correlation measurements (amplitude and phase).

Source Data Fig. 3

Correlation and phase dependence over the two-photon detuning for repulsive interactions.

Source Data Fig. 4

Three-photon correlations and emergent phenomena.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cantu, S.H., Venkatramani, A.V., Xu, W. et al. Repulsive photons in a quantum nonlinear medium. Nat. Phys. 16, 921–925 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing