Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pre-formed Cooper pairs in copper oxides and LaAlO3—SrTiO3 heterostructures


The Bardeen–Cooper–Schrieffer theory of superconductivity and the Landau–Fermi liquid theory form the basis of our current understanding of conventional superconductors and their parent non-superconducting phases. However, some exotic superconductors do not conform to this physical picture but instead feature an unusual ‘normal’ state that is not a Fermi liquid. One explanation of this unusual behaviour is that pre-formed pairs of electrons are established above the superconducting temperature Tc. Here, we highlight recent experiments that show the likely existence of these pre-formed pairs in two rather different materials—a high-temperature cuprate superconductor and strontium titanate. Moreover, in both materials the normal state from which superconductivity emerges has other shared properties, including a pseudogap and electronic nematicity—rotational symmetry breaking in the electron fluid that is not expected in Fermi liquid theory nor more generally from the crystal lattice symmetry. These experimental findings should provoke more interaction between the communities working on these materials and new insights into the underlying mechanism of the creation of pre-formed pairs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Illustration of the phase diagram of the BCS–BEC crossover.
Fig. 2: Two extraordinary superconductors.

Yun-Yi Pai

Fig. 3: Proportion of tunnelling pairs inferred from shot-noise measurements.
Fig. 4: Pre-formed electron pairs and their generalizations in LaAlO3/SrTiO3 nanowires.
Fig. 5: Comparison of electronic nematicity in La2–xSrxCuO4 and LaAlO3/SrTiO3.


  1. 1.

    Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of Superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    ADS  MathSciNet  MATH  Google Scholar 

  2. 2.

    Eagles, D. M. Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors. Phys. Rev. 186, 456–463 (1969).

    ADS  Google Scholar 

  3. 3.

    Leggett, A. J. Diatomic molecules and cooper pairs (Springer, 1980).

  4. 4.

    Nozières, P. & Schmitt-Rink, S. Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59, 195–211 (1985).

    ADS  Google Scholar 

  5. 5.

    Chen, Q., Stajic, J., Tan, S. & Levin, K. BCS–BEC crossover: from high temperature superconductors to ultracold superfluids. Phys. Rep. 412, 1–88 (2005).

    ADS  Google Scholar 

  6. 6.

    Randeria, M. & Taylor, E. Crossover from Bardeen-Cooper-Schrieffer to Bose-Einstein Condensation and the Unitary Fermi Gas. Ann. Rev. Cond. Matt. Phys. 5, 209–232 (2014).

    ADS  Google Scholar 

  7. 7.

    Cornell, E. A. & Wieman, C. E. Nobel lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002).

    ADS  Google Scholar 

  8. 8.

    Ketterle, W. Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002).

    ADS  Google Scholar 

  9. 9.

    Greiner, M., Regal, C. A. & Jin, D. S. Emergence of a molecular Bose–Einstein condensate from a Fermi gas. Nature 426, 537–540 (2003).

    ADS  Google Scholar 

  10. 10.

    Anderson, P. W. The theory of superconductivity in the high-T c cuprates (Princeton Univ. Press, 1997).

  11. 11.

    Friedberg, R. & Lee, T. D. Boson-Fermion model of superconductivity. Phy. Lett. A 138, 423–427 (1989).

    ADS  Google Scholar 

  12. 12.

    Alexandrov, A. S. & Mott, N. F. High Temperature Superconductors and Other Superfluids (Taylor & Francis, 1994).

  13. 13.

    Zhao, G.-m, Hunt, M. B., Keller, H. & Müller, K. A. Evidence for polaronic supercarriers in the copper oxide superconductors La2–xSrxCuO4. Nature 385, 236–239 (1997).

    ADS  Google Scholar 

  14. 14.

    Deutscher, G. & de Gennes, P.-G. A spatial interpretation of emerging superconductivity in lightly doped cuprates. Comp. Rend. Phys. 8, 937–941 (2007).

    ADS  Google Scholar 

  15. 15.

    Andreev, A. F. Electron pairs for HTSC. J. Exp. Theor. Phys. Lett. 79, 88–90 (2004).

    Google Scholar 

  16. 16.

    Jiang, S., Zou, L. & Ku, W. Non-Fermi-liquid scattering against an emergent Bose liquid: manifestations in the kink and other exotic quasiparticle behavior in the normal-state cuprate superconductors. Phys. Rev. B 99, 104507 (2019).

    ADS  Google Scholar 

  17. 17.

    Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    ADS  Google Scholar 

  18. 18.

    Lee, P. A. Amperean pairing and the pseudogap phase of cuprate superconductors. Phys. Rev. X 4, 031017 (2014).

    Google Scholar 

  19. 19.

    Hamidian, M. H. et al. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 532, 343–347 (2016).

    ADS  Google Scholar 

  20. 20.

    Božović, I., He, X., Wu, J. & Bollinger, A. T. Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature 536, 309–311 (2016).

    ADS  Google Scholar 

  21. 21.

    Zhou, P. et al. Electron pairing in the pseudogap state revealed by shot noise in copper-oxide junctions. Nature 572, 493–496 (2019).

    ADS  Google Scholar 

  22. 22.

    Mahmood, F., He, X., Božović, I. & Armitage, N. P. Locating the missing superconducting electrons in the overdoped cuprates La2-xSrxCuO4. Phys. Rev. Lett. 122, 027003 (2019).

    ADS  Google Scholar 

  23. 23.

    Schooley, J. F., Hosler, W. R. & Cohen, M. L. Superconductivity in semiconducting SrTiO3. Phys. Rev. Lett. 12, 474–475 (1964).

    ADS  Google Scholar 

  24. 24.

    Koonce, C. S., Cohen, M. L., Schooley, J. F., Hosler, W. R. & Pfeiffer, E. R. Superconducting transition temperatures of semiconducting SrTiO3. Phys. Rev. 163, 380–390 (1967).

    ADS  Google Scholar 

  25. 25.

    Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. & Hwang, H. Y. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430, 657–661 (2004).

    ADS  Google Scholar 

  26. 26.

    Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    ADS  Google Scholar 

  27. 27.

    Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    ADS  Google Scholar 

  28. 28.

    Lin, X., Zhu, Z., Fauqué, B. & Behnia, K. Fermi surface of the most dilute superconductor. Phys. Rev. X 3, 021002 (2013).

    Google Scholar 

  29. 29.

    Richter, C. et al. Interface superconductor with gap behaviour like a high-temperature superconductor. Nature 502, 528–531 (2013).

    ADS  Google Scholar 

  30. 30.

    Cheng, G. et al. Electron pairing without superconductivity. Nature 521, 196–199 (2015).

    ADS  Google Scholar 

  31. 31.

    Tuominen, M. T., Hergenrother, J. M., Tighe, T. S. & Tinkham, M. Experimental evidence for parity-based 2e periodicity in a superconducting single-electron Tunneling Transistor. Phys. Rev. Lett. 69, 1997–2000 (1992).

    ADS  Google Scholar 

  32. 32.

    Annadi, A. et al. Quantized ballistic transport of electrons and electron pairs in LaAlO3/SrTiO3 Nanowires. Nano Lett. 18, 4473–4481 (2018).

    ADS  Google Scholar 

  33. 33.

    Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    ADS  Google Scholar 

  34. 34.

    Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi Fluids in Condensed Matter Physics. Ann. Rev. Cond. Matt. Phys. 1, 153–178 (2010).

    ADS  Google Scholar 

  35. 35.

    Wu, J., Bollinger, A. T., He, X. & Božović, I. Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature 547, 432–435 (2017).

    Google Scholar 

  36. 36.

    Ben Shalom, M. et al. Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface. Phys. Rev. B 80, 140403 (2009).

    Google Scholar 

  37. 37.

    Fête, A., Gariglio, S., Caviglia, A. D., Triscone, J. M. & Gabay, M. Rashba induced magnetoconductance oscillations in the LaAlO3-SrTiO3 heterostructure. Phys. Rev. B 86, 201105 (2012).

    ADS  Google Scholar 

  38. 38.

    Joshua, A., Ruhman, J., Pecker, S., Altman, E. & Ilani, S. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface. Proc. Natl Acad. Sci. USA 110, 9633 (2013).

    ADS  Google Scholar 

  39. 39.

    Joshua, A., Pecker, S., Ruhman, J., Altman, E. & Ilani, S. A universal critical density underlying the physics of electrons at the LaAlO3/SrTiO3 interface. Nat. Commun. 3, 1129 (2012).

    ADS  Google Scholar 

  40. 40.

    Pai, Y.-Y., Tylan-Tyler, A., Irvin, P. & Levy, J. in Spintronics Handbook 2nd edn, Vol. 2 (CRC, 2019).

  41. 41.

    Maniv, E. et al. Strong correlations elucidate the electronic structure and phase diagram of LaAlO3/SrTiO3 interface. Nat. Commun. 6, 8239 (2015).

    ADS  Google Scholar 

  42. 42.

    Cheng, G. et al. Tunable electron-electron interactions in LaAlO3/SrTiO3 nanostructures. Phys. Rev. X 6, 041042 (2016).

    Google Scholar 

  43. 43.

    Smink, A. E. M. et al. Gate-tunable band structure of the LaAlO3/SrTiO3 Interface. Phys. Rev. Lett. 118, 106401 (2017).

    ADS  Google Scholar 

  44. 44.

    Trevisan, T. V., Schütt, M. & Fernandes, R. M. Unconventional multiband superconductivity in bulk SrTiO3 and LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 121, 127002 (2018).

    ADS  Google Scholar 

  45. 45.

    Pai, Y.-Y., Tylan-Tyler, A., Irvin, P. & Levy, J. Physics of SrTiO3-based heterostructures and nanostructures: a review. Rep. Prog. Phys. 81, 036503 (2018).

    ADS  Google Scholar 

  46. 46.

    Kalisky, B. et al. Locally enhanced conductivity due to the tetragonal domain structure in LaAlO3/SrTiO3 heterointerfaces. Nat. Mater. 12, 1091–1095 (2013).

    ADS  Google Scholar 

  47. 47.

    Honig, M. et al. Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3. Nat. Mater. 12, 1112–1118 (2013).

    ADS  Google Scholar 

  48. 48.

    Pai, Y.-Y. et al. One-dimensional nature of superconductivity at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 120, 147001 (2018).

    ADS  Google Scholar 

  49. 49.

    Pekker, D., Hellberg, C. S. & Levy, J. Theory of superconductivity at the LaAlO3/SrTiO3 heterointerface: electron pairing mediated by deformation of ferroelastic domain walls. Preprint at (2020).

  50. 50.

    Emery, V. J., Kivelson, S. A. & Zachar, O. Spin-gap proximity effect mechanism of high-temperature superconductivity. Phys. Rev. B 56, 6120–6147 (1997).

    ADS  Google Scholar 

  51. 51.

    Cen, C. et al. Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008).

    ADS  Google Scholar 

  52. 52.

    Ahadi, K. et al. Enhancing superconductivity in SrTiO3 films with strain. Sci. Adv. 5, eaaw0120 (2019).

    ADS  Google Scholar 

  53. 53.

    Marshall, P. B., Mikheev, E., Raghavan, S. & Stemmer, S. Pseudogaps and emergence of coherence in two-dimensional electron liquids in SrTiO3. Phys. Rev. Lett. 117, 046402 (2016).

    ADS  Google Scholar 

  54. 54.

    Kresin, V. Z., Ovchinnikov, Y. N. & Wolf, S. A. Inhomogeneous superconductivity and the “pseudogap” state of novel superconductors. Phys. Rep. 431, 231–259 (2006).

    ADS  Google Scholar 

  55. 55.

    Sacépé, B. et al. Localization of preformed Cooper pairs in disordered superconductors. Nat. Phys. 7, 239–244 (2011).

    Google Scholar 

  56. 56.

    Sacépé, B., Feigel’man, M. & Klapwijk, T. M. Quantum breakdown of superconductivity in low-dimensional materials. Nat. Phys. (2020).

  57. 57.

    Briggeman, M. et al. Pascal conductance series in ballistic one-dimensional LaAlO3/SrTiO3 channels. Science 367, 769–772 (2020).

    ADS  Google Scholar 

Download references


The research at Brookhaven National Laboratory was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. The work at Yale was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant no. GBMF4410. The work at Pittsburgh was supported by a Vannevar Bush Faculty Fellowship program sponsored by the Basic Research Office of the Assistant Secretary of Defense for Research and Engineering and funded by the Office of Naval Research through grant no. N00014-15-1-2847, and NSF grant no. PHY-1913034.

Author information



Corresponding author

Correspondence to Jeremy Levy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Božović, I., Levy, J. Pre-formed Cooper pairs in copper oxides and LaAlO3—SrTiO3 heterostructures. Nat. Phys. 16, 712–717 (2020).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing