Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cosmology at the end of the world

Abstract

In the last two decades the anti-de Sitter/conformal field theory (AdS/CFT) correspondence has emerged as a focal point of many research interests. In particular, it functions as a stepping stone to a still-missing full quantum theory of gravity. In this context, a pivotal question is if and how cosmological physics can be studied using AdS/CFT. Motivated by string theory, braneworld cosmologies propose that our universe is a four-dimensional membrane embedded in a bulk five-dimensional AdS spacetime. We show how such a scenario can be microscopically realized in AdS/CFT using special field theory states dual to an ‘end-of-the-world brane’ moving in a charged black hole spacetime. Observers on the brane experience cosmological physics and approximately four-dimensional gravity, at least locally in spacetime. This result opens a path towards a description of quantum cosmology and the simulation of cosmology on quantum machines.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Brane trajectory.
Fig. 2: Euclidean brane trajectory.
Fig. 3: Euclidean-sensible solutions.
Fig. 4: Potential Vk[y(r*)]—large black hole.
Fig. 5: Quasibound mode.

Code availability

The code used in this study is available from the corresponding author upon reasonable request.

References

  1. 1.

    ’t Hooft, G. Dimensional reduction in quantum gravity. In Salamfestschrift: a collection of talks (eds Ali, A., Ellis, J. & Randjbar-Daemi, S.) 284–296 (World Scientific, 1993).

  2. 2.

    Susskind, L. The world as a hologram. J. Math. Phys. 36, 6377–6396 (1995).

    ADS  MathSciNet  MATH  Google Scholar 

  3. 3.

    Aharony, O., Gubser, S. S., Maldacena, J. M., Ooguri, H. & Oz, Y. Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000).

    ADS  MathSciNet  MATH  Google Scholar 

  4. 4.

    Cooper, S. et al. Black hole microstate cosmology. J. High Energy Phys. 2019, 65 (2019).

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Karch, A. & Randall, L. Open and closed string interpretation of SUSY CFT’s on branes with boundaries. J. High Energy Phys. 2001(06), 063 (2001).

    ADS  MathSciNet  Google Scholar 

  6. 6.

    Takayanagi, T. Holographic dual of BCFT. Phys. Rev. Lett. 107, 101602 (2011).

    ADS  Google Scholar 

  7. 7.

    Fujita, M., Takayanagi, T. & Tonni, E. Aspects of AdS/BCFT. J. High Energy Phys. 2011, 43 (2011).

    ADS  MathSciNet  MATH  Google Scholar 

  8. 8.

    Kourkoulou, I. & Maldacena, J. Pure states in the SYK model and nearly-AdS 2 gravity. Preprint at https://arxiv.org/abs/1707.02325 (2017).

  9. 9.

    Almheiri, A., Mousatov, A. & Shyani, M. Escaping the interiors of pure boundary-state black holes. Preprint at https://arxiv.org/abs/1803.04434 (2018).

  10. 10.

    Papadodimas, K. & Raju, S. An infalling observer in AdS/CFT. J. High Energy Phys. 2013, 212 (2013).

    ADS  Google Scholar 

  11. 11.

    Papadodimas, K. & Raju, S. State-dependent bulk-boundary maps and black hole complementarity. Phys. Rev. D 89, 086010 (2014).

    ADS  Google Scholar 

  12. 12.

    Papadodimas, K. & Raju, S. Remarks on the necessity and implications of state-dependence in the black hole interior. Phys. Rev. D 93, 084049 (2016).

    ADS  MathSciNet  Google Scholar 

  13. 13.

    Harlow, D. Aspects of the Papadodimas-Raju proposal for the black hole interior. J. High Energy Phys. 2014, 55 (2014).

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Hartman, T. & Maldacena, J. Time evolution of entanglement entropy from black hole interiors. J. High Energy Phys. 2013, 14 (2013).

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Binetruy, P., Deffayet, C. & Langlois, D. Nonconventional cosmology from a brane universe. Nucl. Phys. B 565, 269–287 (2000).

    ADS  MATH  Google Scholar 

  16. 16.

    Padilla, A. Brane World Cosmology and Holography. PhD thesis, Durham Univ. (2002); https://arxiv.org/abs/hep-th/0210217

  17. 17.

    Gregory, J. P. & Padilla, A. Exact brane world cosmology induced from bulk black holes. Class. Quantum Gravity 19, 4071–4083 (2002).

    ADS  MATH  Google Scholar 

  18. 18.

    Gubser, S. S. AdS/CFT and gravity. Phys. Rev. D 63, 084017 (2001).

    ADS  MathSciNet  Google Scholar 

  19. 19.

    Savonije, I. & Verlinde, E. P. CFT and entropy on the brane. Phys. Lett. B 507, 305–311 (2001).

    ADS  MathSciNet  MATH  Google Scholar 

  20. 20.

    Biswas, A. K. & Mukherji, S. Holography and stiff matter on the brane. J. High Energy Phys. 2001(03), 046 (2001).

    MathSciNet  Google Scholar 

  21. 21.

    Verlinde, E. P. On the holographic principle in a radiation dominated universe. Preprint at https://arxiv.org/abs/hep-th/0008140 (2000).

  22. 22.

    McFadden, P. & Skenderis, K. Holography for cosmology. Phys. Rev. D 81, 021301 (2010).

    ADS  MathSciNet  Google Scholar 

  23. 23.

    Bernardo, H. & Nastase, H. Holographic cosmology from ‘dimensional reduction’ of \({\mathcal{N}}=4\) SYM vs. AdS5 × S5. J. High Energy Phys. 12, 025 (2019).

    ADS  Google Scholar 

  24. 24.

    Dong, X., Silverstein, E. & Torroba, G. De Sitter holography and entanglement entropy. J. High Energy Phys. 07, 050 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  25. 25.

    Bilic, N. Randall-Sundrum versus holographic cosmology. Phys. Rev. D 93, 066010 (2016).

    ADS  MathSciNet  Google Scholar 

  26. 26.

    Randall, L. & Sundrum, R. A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999).

    ADS  MathSciNet  MATH  Google Scholar 

  27. 27.

    Randall, L. & Sundrum, R. An alternative to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999).

    ADS  MathSciNet  MATH  Google Scholar 

  28. 28.

    Karch, A. & Randall, L. Locally localized gravity. J. High Energy Phys. 05, 008 (2001).

    ADS  MathSciNet  MATH  Google Scholar 

  29. 29.

    Seahra, S. S., Clarkson, C. & Maartens, R. Delocalization of brane gravity by a bulk black hole. Class. Quantum Gravity 22, L91–L102 (2005).

    ADS  MathSciNet  MATH  Google Scholar 

  30. 30.

    Clarkson, C. & Seahra, S. S. Braneworld resonances. Class. Quantum Gravity 22, 3653–3688 (2005).

    ADS  MathSciNet  MATH  Google Scholar 

  31. 31.

    Dias, G. A. S. & Lemos, J. P. S. Hamiltonian thermodynamics of d-dimensional (d ≥ 4) Reissner-Nordström-anti-de Sitter black holes with spherical, planar, and hyperbolic topology. Phys. Rev. D 79, 044013 (2009).

    ADS  MathSciNet  Google Scholar 

  32. 32.

    Huang, Y., Liu, D.-J. & Li, X.-Z. Superradiant instability of D-dimensional Reissner–Nordström-anti-de Sitter black hole mirror system. Int. J. Mod. Phys. D 26, 1750141 (2017).

    ADS  Google Scholar 

  33. 33.

    Avelino, P. P., Hamilton, A. J. S., Herdeiro, C. A. R. & Zilhao, M. Mass inflation in a D-dimensional Reissner-Nordström black hole: a hierarchy of particle accelerators? Phys. Rev. D 84, 024019 (2011).

    ADS  Google Scholar 

  34. 34.

    Sadeghi, J. & RezaShajiee, V. Quantum tunneling from the charged non-rotating BTZ black hole with GUP. Eur. Phys. J. Plus 132, 132 (2017).

    Google Scholar 

  35. 35.

    Gouteraux, B. Black-Hole Solutions to Einstein’s Equations in the Presence of Matter and Modifications of Gravitation in Extra Dimensions. PhD thesis, Orsay, LPT (2010); https://arxiv.org/abs/1011.4941

  36. 36.

    Ghosh, A. & Mitra, P. Temperatures of extremal black holes. Preprint at https://arxiv.org/abs/gr-qc/9507032 (1995).

  37. 37.

    Andrade, T., Fischetti, S., Marolf, D., Ross, S. F. & Rozali, M. Entanglement and correlations near extremality: CFTs dual to Reissner-Nordström AdS 5. J. High Energy Phys. 04, 023 (2014).

    ADS  Google Scholar 

  38. 38.

    Hawking, S. W. & Ross, S. F. Duality between electric and magnetic black holes. Phys. Rev. D 52, 5865–5876 (1995).

    ADS  MathSciNet  Google Scholar 

  39. 39.

    Chamblin, A., Emparan, R., Johnson, C. V. & Myers, R. C. Charged AdS black holes and catastrophic holography. Phys. Rev. D 60, 064018 (1999).

    ADS  MathSciNet  Google Scholar 

  40. 40.

    Burikham, P. & Promsiri, C. The mixed phase of charged AdS black holes. Adv. High Energy Phys. 2016, 5864672 (2016).

    MATH  Google Scholar 

  41. 41.

    Maldacena, J. & Qi, X.-L. Eternal traversable wormhole. Preprint at https://arxiv.org/abs/1804.00491 (2018).

  42. 42.

    Cottrell, W., Freivogel, B., Hofman, D. M. & Lokhande, S. F. How to build the thermofield double state. J. High Energy Phys. 02, 058 (2019).

    ADS  MathSciNet  MATH  Google Scholar 

  43. 43.

    Martyn, J. & Swingle, B. Product spectrum ansatz and the simplicity of thermal states. Phys. Rev. A 100, 032107 (2019).

    ADS  MathSciNet  Google Scholar 

  44. 44.

    Chavanis, P.-H. Cosmology with a stiff matter era. Phys. Rev. D 92, 103004 (2015).

    ADS  Google Scholar 

  45. 45.

    Hovdebo, J. L. & Myers, R. C. Bouncing braneworlds go crunch! J. Cosmol. Astropart. Phys. 0311, 012 (2003).

    ADS  MathSciNet  Google Scholar 

  46. 46.

    Kodama, H. & Ishibashi, A. Master equations for perturbations of generalized static black holes with charge in higher dimensions. Prog. Theor. Phys. 111, 29–73 (2004).

    ADS  MATH  Google Scholar 

  47. 47.

    Ryu, S. & Takayanagi, T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  48. 48.

    Hubeny, V. E., Rangamani, M. & Takayanagi, T. A covariant holographic entanglement entropy proposal. J. High Energy Phys. 07, 062 (2007).

    ADS  MathSciNet  Google Scholar 

  49. 49.

    Chiodaroli, M., D’Hoker, E. & Gutperle, M. Simple holographic duals to boundary CFTs. J. High Energy Phys. 02, 005 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US Department of Energy, Office of Science, Office of High Energy Physics QuantISED Award DE-SC0019380 and by the Simons Foundation via the It from Qubit collaboration. We thank M. Van Raamsdonk, C. Waddell, D. Wakeham, M. Rozali, S. Cooper, R. Sundrum, R. Bousso, S. Kumar, Y. Wang and J. Maldacena for discussions.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Stefano Antonini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Neven Bilic, Tadashi Takayanagi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Action difference - Large black hole.

Results for four spatial dimensions (d = 4). We set the outer horizon radius to be r+ = 100, with the AdS length given by LAdS = 1. a, We chose r = 50 for the inner horizon radius. When the tension T is not too close to its critical value Tcrit = 1/LAdS = 1, the preparation time τ0 is positive (i.e. the solution is Euclidean-sensible) and the action difference ΔI is negative, meaning that the non-extremal phase is always dominant in the path integral. b, For a near-critical brane (we chose a value T = 0.99999 ~ Tcrit for the brane tension), when the black hole is sufficiently close to extremality (i.e. rr+), the preparation time τ0 becomes positive, and therefore the Euclidean solution is sensible. The non-extremal phase is already dominant in the ensemble (i.e. the action difference ΔI is negative) well before it happens. The same properties hold also for the small black hole case.

Extended Data Fig. 2 Proper brane trajectory r(λ).

Results for four spatial dimensions (d = 4), where we chose the AdS length to be LAdS = 1. a, Brane radius r(λ) as a function of the brane proper time λ for a subcritical brane of tension T = 0.89. During its trajectory, the brane radius expands to a maximum value r0 larger than the black hole outer horizon r+ = 100, and shrinks to a minimum value \({r}_{0}^{-}\) smaller than the black hole inner horizon r = 91. b, For larger values of the brane tension (T = 0.99999 ~ Tcrit = 1/LAdS = 1) and a near-extremal black hole (r+ = 100, r = 99.9), the maximum radius of the brane r0 is larger, and the inversion at the minimum radius \({r}_{0}^{-}\) becomes sharper. In both cases the brane trajectory resembles the one qualitatively described in Fig. 1 of the main paper.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–13 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antonini, S., Swingle, B. Cosmology at the end of the world. Nat. Phys. 16, 881–886 (2020). https://doi.org/10.1038/s41567-020-0909-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing