Abstract
Strongly correlated systems can give rise to spectacular phenomenology, from high-temperature superconductivity to the emergence of states of matter characterized by long-range quantum entanglement. Low-density flat-band systems play a vital role because the energy range of the band is so narrow that the Coulomb interactions dominate over kinetic energy, putting these materials in the strongly-correlated regime. Experimentally, when a band is narrow in both energy and momentum, its filling may be tuned in situ across the whole range, from empty to full. Recently, one particular flat-band system—that of van der Waals heterostructures, such as twisted bilayer graphene—has exhibited strongly correlated states and superconductivity, but it is still not clear to what extent the two are linked. Here, we review the status and prospects for flat-band engineering in van der Waals heterostructures and explore how both phenomena emerge from the moiré flat bands.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Baby skyrmions in Chern ferromagnets and topological mechanism for spin-polaron formation in twisted bilayer graphene
Nature Communications Open Access 21 October 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
Wen, X.-G. Topological orders and edge excitations in fractional quantum Hall states. Adv. Phys 44, 405–473 (1995).
Bednorz, J. G. & Müller, K. A. Possible highTc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986).
Fradkin, E. & Kivelson, S. A. Ineluctable complexity. Nat. Phys 8, 864–866 (2012).
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol 5, 722–726 (2010).
Wang, L. et al. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science 342, 614–617 (2013).
Kim, K. et al. van der Waals Heterostructures with High Accuracy Rotational Alignment. Nano Lett. 16, 1989–1995 (2016).
Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).
Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).
Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).
Hunt, B. et al. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructure. Science 340, 1427–1430 (2013).
Wang, L. et al. Evidence for a fractional fractal quantum Hall effect in graphene superlattices. Science 350, 1231–1234 (2015).
Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).
Cheng, B. et al. Fractional and Symmetry-Broken Chern Insulators in Tunable Moiré Superlattices. Nano Lett. 19, 4321–4326 (2019).
Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys 15, 237–241 (2019).
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe 2/WS 2 moiré superlattices. Nature 579, 359–363 (2020).
Wang, L. et al. Magic continuum in twisted bilayer WSe2. Preprint at https://arxiv.org/abs/1910.12147 (2019).
Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007).
Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: Tight-binding calculations. Phys. Rev. B 82, 121407 (2010).
Bistritzer, R. & MacDonald, A. H. Moiré butterflies in twisted bilayer graphene. Phys. Rev. B 84 (2011).
Barkeshli, M. & Qi, X.-L. Topological Nematic States and Non-Abelian Lattice Dislocations. Phys. Rev. X 2, 031013 (2012).
Knapp, C., Spanton, E. M., Young, A. F., Nayak, C. & Zaletel, M. P. Fractional Chern insulator edges and layer-resolved lattice contacts. Phys. Rev. B 99, 081114 (2019).
Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).
Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).
Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).
Song, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological Bloch bands in graphene superlattices. Proc. Natl Acad. Sci. USA 112, 10879–10883 (2015).
Po, H. C., Zou, L., Vishwanath, A. & Senthil, T. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X 8, 031089 (2018).
Zou, L., Po, H. C., Vishwanath, A. & Senthil, T. Band structure of twisted bilayer graphene: Emergent symmetries, commensurate approximants, and Wannier obstructions. Physical Review B 98, 085435 (2018).
Liu, J., Liu, J. & Dai, X. Pseudo Landau level representation of twisted bilayer graphene: band topology and implications on the correlated insulating phase. Phys. Rev. B 99, 155415 (2019).
Xie, M. & MacDonald, A. H. On the nature of the correlated insulator states in twisted bilayer graphene. Phys. Rev. Lett. 124, 097601 (2020).
Kang, J. & Vafek, O. Strong coupling phases of partially filled twisted bilayer graphene narrow bands. Phys. Rev. Lett. 122, 246401 (2019).
Liu, S., Khalaf, E., Lee, J. Y. & Vishwanath, A. Nematic topological semimetal and insulator in magic angle bilayer graphene at charge neutrality. Preprint at https://arxiv.org/abs/1905.07409 (2019).
Liu, J. & Dai, X. Correlated insulating states and the quantum anomalous Hall phenomena at all integer fillings in twisted bilayer graphene. Preprint at https://arxiv.org/abs/1911.03760 (2020).
Wu, F. & Sarma, S. D. Collective excitations of quantum anomalous hall ferromagnets in twisted bilayer graphene. Phys. Rev. Lett. 124, 046403 (2020).
Zhang, Y., Jiang, K., Wang, Z. & Zhang, F. Correlated insulating phases of twisted bilayer graphene at commensurate filling fractions: a Hartree-Fock study. Preprint at https://arxiv.org/abs/2001.02476 (2020).
Bultinck, N. et al. Ground state and hidden symmetry of magic angle graphene at even integer filling. Preprint at https://arxiv.org/abs/1911.02045 (2019).
Dodaro, J. F., Kivelson, S. A., Schattner, Y., Sun, X. Q. & Wang, C. Phases of a phenomenological model of twisted bilayer graphene. Phys. Rev. B 98, 075154 (2018).
Xu, C. & Balents, L. Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett. 121, 087001 (2018).
Guinea, F. & Walet, N. R. Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers. Proc. Natl Acad. Sci. USA 115, 13174–13179 (2018).
Liu, C.-C., Zhang, L.-D., Chen, W.-Q. & Yang, F. Chiral Spin Density Wave and d+ i d Superconductivity in the Magic-Angle-Twisted Bilayer Graphene. Phys. Rev. Lett. 121, 217001 (2018).
Guo, H., Zhu, X., Feng, S. & Scalettar, R. T. Pairing symmetry of interacting fermions on a twisted bilayer graphene superlattice. Phys. Rev. B 97, 235453 (2018).
Lian, B., Wang, Z. & Bernevig, B. A. Twisted bilayer graphene: a phonon-driven superconductor. Phys. Rev. Lett. 122, 257002 (2019).
Wu, F., MacDonald, A. H. & Martin, I. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018).
Peltonen, T. J., Ojajärvi, R. & Heikkilä, T. T. Mean-field theory for superconductivity in twisted bilayer graphene. Phys. Rev. B 98, 220504 (2018).
Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).
Stepanov, P. et al. The interplay of insulating and superconducting orders in magic-angle graphene bilayers. Preprint at https://arxiv.org/abs/1911.09198 (2019).
Arora, H. S. et al. Superconductivity without insulating states in twisted bilayer graphene stabilized by monolayer Wse2. Preprint at https://arxiv.org/abs/2002.03003 (2020).
Liu, X. et al. Spin-polarized Correlated Insulator and Superconductor in Twisted Double Bilayer Graphene. Preprint at https://arxiv.org/abs/1903.08130 (2019).
Codecido, E. et al. Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Sci. Adv. 5, eaaw9770 (2019).
Moriyama, S. et al. Observation of superconductivity in bilayer graphene/hexagonal boron nitride superlattices. Preprint at https://arxiv.org/abs/1901.09356 (2019).
Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 572, 215–219 (2019).
He, M. et al. Tunable correlation-driven symmetry breaking in twisted double bilayer graphene. Preprint at https://arxiv.org/abs/2002.08904 (2020).
Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys 15, 1174–1180 (2019).
Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).
Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).
Uri, A. et al. Mapping the twist angle and unconventional Landau levels in magic angle graphene. Nature 581, 47–52 (2020).
Zondiner, U. et al. Cascade of phase transitions and dirac revivals in magic angle graphene. Preprint at https://arxiv.org/abs/1912.06150 (2019).
Wong, D. et al. Cascade of transitions between the correlated electronic states of magic-angle twisted bilayer graphene. Preprint at https://arxiv.org/abs/1912.06145 (2019).
McGilly, L. J. et al. Seeing moiré superlattices. Preprint at https://arxiv.org/abs/1912.06629 (2019).
Utama, M. I. B. et al. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Preprint at https://arxiv.org/abs/1912.00587 (2019).
Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Decoupling superconductivity and correlated insulators in twisted bilayer graphene. Preprint at https://arxiv.org/abs/1911.13302 (2019).
Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
Kang, J. & Vafek, O. Symmetry, maximally localized Wannier States, and a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X 8, 031088 (2018).
Koshino, M. et al. Maximally localized Wannier orbitals and the extended Hubbard Model for twisted bilayer graphene. Phys. Rev. X 8, 031087 (2018).
Carr, S., Fang, S., Po, H. C., Vishwanath, A. & Kaxiras, E. Derivation of Wannier orbitals and minimal-basis tight-binding Hamiltonians for twisted bilayer graphene: first-principles approach. Phys. Rev. Res 1, 033072 (2019).
Goodwin, Z. A. H., Corsetti, F., Mostofi, A. A. & Lischner, J. Twist-angle sensitivity of electron correlations in moiré graphene bilayers. Phys. Rev. B 100, 121106 (2019).
Pizarro, J. M., Rösner, M., Thomale, R., Valentí, R. & Wehling, T. O. Internal screening and dielectric engineering in magic-angle twisted bilayer graphene. Phys. Rev. B 100, 161102 (2019).
Liu, X. et al. Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening. Preprint at https://arxiv.org/abs/2003.11072 (2020).
Tsuei, C. C. & Kirtley, J. R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000).
Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys 15, 1011–1016 (2019).
Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).
Cao, Y. et al. Electric field tunable correlated states and magnetic phase transitions in twisted bilayer-bilayer graphene. Nature https://doi.org/10.1038/s41586-020-2260-6 (2020).
Burg, G. W. et al. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett. 123, 197702 (2019).
Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys https://doi.org/10.1038/s41567-020-0825-9 (2020).
Zhang, Z. et al. Flat bands in small angle twisted bilayer WSe2. Preprint at https://arxiv.org/abs/1910.13068 (2019).
Zaletel, M. P., Mong, R. S. K., Pollmann, F. & Rezayi, E. H. Infinite density matrix renormalization group for multicomponent quantum Hall systems. Phys. Rev. B 91, 045115 (2015).
Carr, S., Fang, S., Jarillo-Herrero, P. & Kaxiras, E. Pressure dependence of the magic twist angle in graphene superlattices. Phys. Rev. B 98, 085144 (2018).
Chittari, B. L., Leconte, N., Javvaji, S. & Jung, J. Pressure induced compression of flatbands in twisted bilayer graphene. Electron. Struct 1, 015001 (2018).
Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).
Acknowledgements
We thank K. Hejazi and C. Liu for assistance with preparation of Fig. 1c. L.B. acknowledges support by the NSF CMMT program under award no. DMR-1818533; the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-FG02-08ER46524 and the UCSB NSF Quantum Foundry through Q-AMASE-i program award no. DMR-1906325. A.F.Y. acknowledges the support of the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0020043 and the UCSB NSF Quantum Foundry through Q-AMASE-i program award no. DMR-1906325. C.R.D. acknowledges the support of the Pro-QM EFRC funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0019443. D.K.E. acknowledges support from the Ministry of Economy and Competitiveness of Spain through the ‘Severo Ochoa’ program for Centres of Excellence in R&D (SE5-0522), Fundació Privada Cellex, Fundació Privada Mir-Puig, the Generalitat de Catalunya through the CERCA program, the H2020 Programme under grant agreement no. 820378, Project: 2D·SIPC and the La Caixa Foundation.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Physics thanks Emanuel Tutuc and Oskar Vafek for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Balents, L., Dean, C.R., Efetov, D.K. et al. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020). https://doi.org/10.1038/s41567-020-0906-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-020-0906-9
This article is cited by
-
Unravelling the magic of twisted trilayer graphene
Nature Materials (2023)
-
Evidence for Dirac flat band superconductivity enabled by quantum geometry
Nature (2023)
-
Photocurrent as a multiphysics diagnostic of quantum materials
Nature Reviews Physics (2023)
-
Exciton density waves in Coulomb-coupled dual moiré lattices
Nature Materials (2023)
-
Atomic Bose–Einstein condensate in twisted-bilayer optical lattices
Nature (2023)