Direct measurement of the intrinsic electric dipole moment in pear-shaped thorium-228


Atomic nuclei with certain combinations of proton and neutron numbers can adopt reflection-asymmetric or octupole-deformed shapes at low excitation energy. These nuclei present a promising avenue in the search for a permanent atomic electric dipole moment—the existence of which has implications for physics beyond the Standard Model of particle physics. Theoretical studies have suggested that certain thorium isotopes may have large octupole deformation. However, due to experimental challenges, the extent of the octupole collectivity in the low-energy states in these thorium nuclei has not yet been demonstrated. Here, we report measurements of the lifetimes of low-energy states in 228Th (Z = 90) with a direct electronic fast-timing technique, the mirror symmetric centroid difference method. From lifetime measurements of the low-lying Jπ = 1 and Jπ = 3 states, the E1 transition probability rates and the intrinsic dipole moment are determined. The results are in agreement with those of previous theoretical calculations, allowing us to estimate the extent of the octupole deformation of 228Th. This study indicates that the nuclei 229Th and 229Pa (Z = 91) may be good candidates for the search for a permanent atomic electric dipole moment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Gamma-ray spectra resulting from the decay of 232Th.
Fig. 2: A partial level scheme showing relevant states and γ-ray transitions in 228Th.
Fig. 3: Timing and γ-ray energy spectra.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code used to process the data presented in this paper is available from the corresponding author upon reasonable request.


  1. 1.

    Bohr, A. The coupling of nuclear surface oscillations to the motion of individual nucleons. Dan. Mat. Fys. Medd. 26, No. 14 (1952).

  2. 2.

    Bohr, A. & Mottelson, B. R. Collective and individual-particle aspects of nuclear structure. Dan. Mat. Fys. Medd. 27, No. 16 (1953).

  3. 3.

    Butler, P. A. & Nazarewicz, W. Intrinsic dipole moments in reflection-asymmetric nuclei. Nucl. Phys. A 533, 249–268 (1991).

    ADS  Article  Google Scholar 

  4. 4.

    Regan, B. C., Commins, E. D., Schmidt, C. J. & Demille, D. New limit on the electron electric dipole moment. Phys. Rev. Lett. 88, 071805 (2002).

    ADS  Article  Google Scholar 

  5. 5.

    Hudson, J. J. et al. Improved measurement of the shape of the electron. Nature 473, 493–496 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    Baron, J. et al. Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343, 269–272 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Cairncross, W. B. et al. Precision measurement of the electron’s electric dipole moment using trapped molecular ions. Phys. Rev. Lett. 119, 153001 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    ACME Collaboration. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Agbemava, S. E., Afanasjev, A. V. & Ring, P. Octupole deformation in the ground states of even–even nuclei: a global analysis within the covariant density functional theory. Phys. Rev. C 93, 044304 (2016).

  10. 10.

    Schiff, L. I. Measurability of nuclear electric dipole moments. Phys. Rev. 132, 2194–2200 (1963).

    ADS  Article  Google Scholar 

  11. 11.

    Sushkov, O., Flambaum, V. & Khriplovich, I. Possibility of investigating P- and T-odd nuclear forces in atomic and molecular experiments. Zh. Eksp. Teor. Fiz. 87, 1521–1540 (1984).

    Google Scholar 

  12. 12.

    Flambaum, V. V., Khriplovich, I. B. & Sushkov, O. P. Limit on the constant of T-nonconserving nucleon-nucleon interaction. Phys. Lett. B 162, 213–216 (1985).

    ADS  Article  Google Scholar 

  13. 13.

    Auerbach, N., Flambaum, V. V. & Spevak, V. Collective T- and P-odd electromagnetic moments in nuclei with octupole deformations. Phys. Rev. Lett. 76, 4316–4319 (1996).

    ADS  Article  Google Scholar 

  14. 14.

    Spevak, V., Auerbach, N. & Flambaum, V. V. Enhanced T-odd, P-odd electromagnetic moments in reflection asymmetric nuclei. Phys. Rev. C 56, 1357–1369 (1997).

  15. 15.

    Ellis, J., Lee, J. S. & Pilaftsis, A. Maximal electric dipole moments of nuclei with enhanced Schiff moments. J. High Energy Phys. 2011, 45 (2011).

    Article  Google Scholar 

  16. 16.

    Chasman, R. R. Incipient octupole deformation and parity doublets in the odd mass light actinides. Phys. Lett. B 96, 7–10 (1980).

    ADS  Article  Google Scholar 

  17. 17.

    Ahmad, I., Gindler, J. E., Betts, R. R., Chasman, R. R. & Friedman, A. M. Possible ground-state octupole deformation in 229Pa. Phys. Rev. Lett. 49, 1758–1761 (1982).

  18. 18.

    Grafen, V. et al. Does a 5/2+-5/2 ground-state parity doublet exist in 229Pa? Phys. Rev. C 44, R1728–R1731 (1991).

    ADS  Article  Google Scholar 

  19. 19.

    Lösch, A. et al. The low-lying levels in 229Pa and parity doublets. Z. Phys. A 348, 235–235 (1994).

    ADS  Article  Google Scholar 

  20. 20.

    Ahmad, I., Chasman, R. R., Greene, J. P., Kondev, F. G. & Zhu, S. Electron capture decay of 58-min \({}_{92}^{229}{\mathrm{U}}\)and levels in \({}_{92}^{229}{\mathrm{U}}\). Phys. Rev. C 92, 024313 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Flambaum, V. V. Enhanced nuclear Schiff moment and time-reversal violation in 229Th-containing molecules. Phys. Rev. C 99, 035501 (2019).

  22. 22.

    Stephens, F., Asaro, F. & Perlman, I. Low-lying 1 states in even–even nuclei. Phys. Rev. 96, 1568–1572 (1954).

    ADS  Article  Google Scholar 

  23. 23.

    Stephens, F. S., Asaro, F. & Perlman, I. Radiations from 1 states in even–even nuclei. Phys. Rev. 100, 1543–1545 (1955).

    ADS  Article  Google Scholar 

  24. 24.

    Robledo, L. M. & Butler, P. A. Quadrupole-octupole coupling in the light actinides. Phys. Rev. C 88, 051302 (2013).

    ADS  Article  Google Scholar 

  25. 25.

    Gaffney, L. P. et al. Studies of pear-shaped nuclei using accelerated radioactive beams. Nature 497, 199–204 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Wollersheim, H. J. et al. Coulomb excitation of 226Ra. Nucl. Phys. A 556, 261–280 (1993).

    ADS  Article  Google Scholar 

  27. 27.

    Egido, J. L. & Robledo, L. M. Microscopic study of the octupole degree of freedom in the radium and thorium isotopes with Gogny forces. Nucl. Phys. A 494, 85–101 (1989).

    ADS  Article  Google Scholar 

  28. 28.

    Butler, P. A. & Nazarewicz, W. Intrinsic reflection asymmetry in atomic nuclei. Rev. Mod. Phys. 68, 349–421 (1996).

    ADS  Article  Google Scholar 

  29. 29.

    Ansari, S. et al. Experimental study of the lifetime and phase transition in neutron-rich 98,100,102Zr. Phys. Rev. C 96, 054323 (2017).

  30. 30.

    Martin, M. Nuclear data sheets for A = 208. Nucl. Data Sheets 108, 1583–1806 (2007).

    ADS  Article  Google Scholar 

  31. 31.

    Ton, H., Beens, W., Roodbergen, S. & Blok, J. Lifetimes of 2+ and 4+ rotational states in heavy doubly even nuclei. Nucl. Phys. A 155, 235–244 (1970).

    ADS  Article  Google Scholar 

  32. 32.

    Weber, T., Gröger, J., Günther, C. & deBoer, J. Study of the first-excited K π=0+ and 2+ bands in 228Th in the 226Ra(α,2n) reaction. Eur. Phys. J. A 1, 39–44 (1998).

    ADS  Article  Google Scholar 

  33. 33.

    Alaga, G., Alder, K., Bohr, A. & Mottelson, B. R. Intensity rules for beta and gamma transitions to nuclear rotational states. Dan. Mat. Fys. Medd. 29, No. 9 (1955).

  34. 34.

    Schüler, P. et al. High-spin states in 224,226,228Th and the systematics of octupole effects in even Th isotopes. Phys. Lett. B 174, 241–245 (1986).

    ADS  Article  Google Scholar 

  35. 35.

    Ackermann, B. et al. Collective E1 transitions in even-A Ra, Th, and U nuclei. Nucl. Phys. A 559, 61–82 (1993).

    ADS  Article  Google Scholar 

  36. 36.

    Leander, G. A. & Chen, Y. S. Reflection-asymmetric rotor model of odd A~219-229 nuclei. Phys. Rev. C 37, 2744–2778 (1988).

  37. 37.

    Dobaczewski, J., Engel, J., Kortelainen, M. & Becker, P. Correlating Schiff moments in the light actinides with octupole moments. Phys. Rev. Lett. 121, 232501 (2018).

  38. 38.

    Parker, R. H. et al. First measurement of the atomic electric dipole moment of 225Ra. Phys. Rev. Lett. 114, 233002 (2015).

  39. 39.

    Bishof, M. et al. Improved limit on the 225Ra electric dipole moment. Phys. Rev. C 94, 025501 (2016).

  40. 40.

    Abusaleem, K. Nuclear data sheets for A=228. Nucl. Data Sheets 116, 163–262 (2014).

    ADS  Article  Google Scholar 

  41. 41.

    Brun, R. & Rademakers, F. ROOT—an object oriented data analysis framework. Nucl. Instrum. Methods Phys. Res. A 389, 81–86 (1997).

    ADS  Article  Google Scholar 

  42. 42.

    Régis, J. M., Pascovici, G., Jolie, J. & Rudigier, M. The mirror symmetric centroid difference method for picosecond lifetime measurements via γ-γ coincidences using very fast LaBr3(Ce) scintillator detectors. Nucl. Instrum. Methods Phys. Res. A 622, 83–92 (2010).

    ADS  Article  Google Scholar 

  43. 43.

    Kocheva, D. et al. Low collectivity of the \({2}_{1}^ {+}\) state of 212Po. Phys. Rev. C 96, 044305 (2017).

    ADS  Article  Google Scholar 

Download references


We acknowledge useful discussions with L. Robledo, who was the recipient of a SUPA Distinguished Visitor grant awarded to the University of the West of Scotland. Financial support for this work has been provided by the Scottish Funding Council (SFC) and the UK Science and Technology Facilities Council (STFC). We acknowledge the support of the UK EPSRC (grant nos EP/J018171/1, EP/J500094/1 and EP/N028694/1), the EC’s LASERLAB-EUROPE (grant no. 654148), EuCARD-2 (grant no. 312453), EuPRAXIA (grant no. 653782), ARIES (grant no. 730871) and the Extreme Light Infrastructure (ELI) European Project.

Author information




D.O’D. conceived the investigation; M.M.R.C., D.O’D. and G.B. set up the instrumentation; M.M.R.C., D.O’D., G.B. and P.S. performed the data analysis; M.M.R.C., D.O’D. and M.S. interpreted the results; D.O’D., M.B., D.A.J., B.S.N.S., M.S., P.S. and J.F.S. contributed to writing the manuscript.

Corresponding author

Correspondence to D. O’Donnell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Prompt response function.

The prompt response differences (PRD) of the fast-timing apparatus. The top panel shows the \(\gamma-\gamma\) time-walk dependence with \(\gamma\) -ray energy of the fast-timing apparatus. Data points correspond to transitions depopulating prompt states in \({}^{152}\) Sm and \({}^{152}\) Gd following the \(\beta\) -decay of \(^{152}\) Eu. Error bars, representing two standard deviations, are smaller than the symbols for the data points. The function fitted to the data has the form \(\text{PRD}(E_\gamma) = \frac{a}{\sqrt{E_\gamma+b}}+c{E_\gamma}^2+dE_\gamma+e\) where \(E_\gamma\) is the \(\gamma\) -ray energy and a,b,c,d and e are parameters to be determined. The bottom panel shows the differences between the data and the fitted prompt response function with the dashed lines showing the mean uncertainty of the fit corresponding to two standard deviations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chishti, M.M.R., O’Donnell, D., Battaglia, G. et al. Direct measurement of the intrinsic electric dipole moment in pear-shaped thorium-228. Nat. Phys. 16, 853–856 (2020).

Download citation