Tunable bandgap renormalization by nonlocal ultra-strong coupling in nanophotonics

Abstract

In quantum optics, great effort is being invested in enhancing the interaction of quantum emitters with light. The different approaches include increasing the number of emitters, the laser intensity or the local photonic density of states at the location of an atom-like localized emitter. In contrast, solid-state extended emitters hold an unappreciated promise of vastly greater enhancements through their large number of vacant electronic valence states. However, the majority of valence states are considered optically inaccessible by a conduction electron. We show that, by interfacing three-dimensional (3D) solids with 2D materials, we can unlock the unoccupied valence states by nonlocal optical interactions that lead to ultra-strong coupling for each conduction electron. Consequently, nonlocal optical interactions fundamentally alter the role of the quantum vacuum in solids and create a new type of tunable mass renormalization and bandgap renormalization, which reach tens of millielectronvolts in the example we show. To present quantitative predictions, we develop a non-perturbative macroscopic quantum electrodynamic formalism that we demonstrate on a graphene–semiconductor–metal nanostructure. We find new effects, such as nonlocal Rabi oscillations and femtosecond-scale optical relaxation, overcoming all other solid relaxation mechanisms and fundamentally altering the role of optical interactions in solids.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The role of nonlocality in reaching USC in solids.
Fig. 2: The ultra-strongly coupled nanophotonic system description.
Fig. 3: Controlling bandgap renormalization and reaching USC by altering the Fermi levels.
Fig. 4: Tunable non-perturbative phenomena in electron–polariton USC.

Data availability

Source data are available for this paper. All other data that support the plots in this paper and other findings of this study are available from the corresponding author.

Code availability

The code that supports the findings of this study is available from the corresponding author.

References

  1. 1.

    Welton, T. A. Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field. Phys. Rev. 74, 1157–1167 (1948).

    ADS  MATH  Article  Google Scholar 

  2. 2.

    Coldren, L. A. & Corzine, S. W. Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

  3. 3.

    Sanchez-Mondragon, J. J., Narozhny, N. B. & Eberly, J. H. Theory of spontaneous-emission line shape in an ideal cavity. Phys. Rev. Lett. 51, 550–553 (1983).

    ADS  Article  Google Scholar 

  4. 4.

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Article  Google Scholar 

  5. 5.

    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  6. 6.

    Haroche, S. & Kleppner, D. Cavity quantum electrodynamics. Phys. Today 42, 24–30 (1989).

    ADS  Article  Google Scholar 

  7. 7.

    Khurgin, J. B. Excitonic radius in the cavity polariton in the regime of very strong coupling. Solid State Commun. 117, 307–310 (2001).

    ADS  Article  Google Scholar 

  8. 8.

    Ciuti, C., Bastard, G. & Carusotto, I. Quantum vacuum properties of the intersubband cavity polariton field. Phys. Rev. B 72, 115303 (2005).

    ADS  Article  Google Scholar 

  9. 9.

    Günter, G. et al. Sub-cycle switch-on of ultrastrong light–matter interaction. Nature 458, 178–181 (2009).

    ADS  Article  Google Scholar 

  10. 10.

    Todorov, Y. & Sirtori, C. Intersubband polaritons in the electrical dipole gauge. Phys. Rev. B 85, 045304 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Schwartz, T., Hutchison, J. A., Genet, C. & Ebbesen, T. W. Reversible switching of ultrastrong light-molecule coupling. Phys. Rev. Lett. 106, 196405 (2011).

    ADS  Article  Google Scholar 

  12. 12.

    Scully, M. O. Collective Lamb shift in single photon Dicke superradiance. Phys. Rev. Lett. 102, 143601 (2009).

    ADS  Article  Google Scholar 

  13. 13.

    Hümmer, T., García-Vidal, F. J., Martín-Moreno, L. & Zueco, D. Weak and strong coupling regimes in plasmonic-QED. Phys. Rev. B 87, 115419 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Forn-Díaz, P., Lamata, L., Rico, E., Kono, J. & Solano, E. Ultrastrong coupling regimes of light–matter interaction. Rev. Mod. Phys. 91, 025005 (2019).

    ADS  Article  Google Scholar 

  15. 15.

    Kockum, A. F., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

    Article  Google Scholar 

  16. 16.

    Basov, D. N., Fogler, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  17. 17.

    Low, T. et al. Polaritons in layered 2D materials. Nat. Mater. 16, 182–194 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Rivera, N., Christensen, T. & Narang, P. Phonon polaritonics in two-dimensional materials. Nano Lett. 19, 2653–2660 (2019).

    ADS  Article  Google Scholar 

  19. 19.

    Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    ADS  Article  Google Scholar 

  20. 20.

    Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Ni, G. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    ADS  Article  Google Scholar 

  23. 23.

    Principi, A., van Loon, E., Polini, M. & Katsnelson, M. I. Confining graphene plasmons to the ultimate limit. Phys. Rev. B 98, 035427 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Alcaraz Iranzo, D. et al. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360, 291–295 (2018).

    Article  Google Scholar 

  25. 25.

    Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D. & Soljačić, M. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263–269 (2016).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Kurman, Y. et al. Control of semiconductor emitter frequency by increasing polariton momenta. Nat. Photon. 12, 423–429 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    Machado, F., Rivera, N., Buljan, H., Soljacic, M. & Kaminer, I. Shaping polaritons to reshape selection rules. ACS Photonics 5, 3064–3072 (2018).

    Article  Google Scholar 

  28. 28.

    Lundeberg, M. et al. Tuning quantum non-local effects in graphene plasmonics. Science 357, 187–191 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Christensen, T. et al. Nonlocal response of metallic nanospheres probed by light, electrons and atoms. ACS Nano 8, 1745–1758 (2014).

    Article  Google Scholar 

  30. 30.

    Yan, W., Wubs, M. & Mortensen, N. A. Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity. Phys. Rev. B 86, 205429 (2012).

    ADS  Article  Google Scholar 

  31. 31.

    Grosso, G. & Parravicini, G. P. Solid State Physics 2nd edn (Academic Press, 2013).

  32. 32.

    Giustino, F. Electron–phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    Mahan, G. D. Many-Particle Physics 3rd edn (Springer, 2000).

  34. 34.

    Glauber, R. J. & Lewenstein, M. Quantum optics of dielectric media. Phys. Rev. A 43, 467–491 (1991).

    ADS  Article  Google Scholar 

  35. 35.

    Scheel, S. & Buhmann, S. Y. Macroscopic QED—concepts and applications. Acta Phys. Slov. 58, 675–809 (2008).

    ADS  Google Scholar 

  36. 36.

    Vogel, W. & Welsch, D.-G. Quantum Optics 3rd edn (Wiley, 2006).

  37. 37.

    Sundaresan, N. M. et al. Beyond strong coupling in a multimode cavity. Phys. Rev. X 5, 021035 (2015).

    Google Scholar 

  38. 38.

    Polini, M. et al. Plasmons and the spectral function of graphene. Phys. Rev. B 77, 081411 (2008).

    ADS  Article  Google Scholar 

  39. 39.

    Song, J. C. & Levitov, L. S. Energy flows in graphene: hot carrier dynamics and cooling. J. Phys. Condens. Matter 27, 164201 (2015).

    ADS  Article  Google Scholar 

  40. 40.

    Rosker, M. J., Wise, F. W. & Tang, C. L. Femtosecond optical measurement of hot‐carrier relaxation in GaAs, AlGaAs and GaAs/AlGaAs multiple quantum well structures. Appl. Phys. Lett. 49, 1726–1728 (1986).

    ADS  Article  Google Scholar 

  41. 41.

    Jacob, Z., Smolyaninov, I. I. & Narimanov, E. E. Broadband Purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012).

    ADS  Article  Google Scholar 

  42. 42.

    Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013).

    ADS  Article  Google Scholar 

  43. 43.

    Fei, Z. et al. Edge and surface plasmons in graphene nanoribbons. Nano Lett. 15, 8271–8276 (2015).

    ADS  Article  Google Scholar 

  44. 44.

    Khurgin, J. B. Two-dimensional exciton–polariton—light guiding by transition metal dichalcogenide monolayers. Optica 2, 740–742 (2015).

    ADS  Article  Google Scholar 

  45. 45.

    Khurgin, J. B. Hot carriers generated by plasmons: where are they generated and where do they go from there?. Faraday Discuss. 214, 35–58 (2019).

    ADS  Article  Google Scholar 

  46. 46.

    Wang, K. et al. Coherent interaction between free electrons and cavity photons. Preprint at https://arxiv.org/pdf/1908.06206.pdf (2019).

  47. 47.

    Muñoz, M. et al. Burstein–Moss shift of n-doped In0.53Ga0.47As/InP. Phys. Rev. B 63, 233302 (2001).

    ADS  Article  Google Scholar 

  48. 48.

    Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251–15257 (2017).

    ADS  Article  Google Scholar 

  49. 49.

    Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    ADS  Article  Google Scholar 

  50. 50.

    Das Sarma, S., Jalabert, R. & Yang, S.-R. E. Band-gap renormalization in semiconductor quantum wells. Phys. Rev. B 41, 8288–8294 (1990).

    ADS  Article  Google Scholar 

  51. 51.

    Walsh, A., Da Silva, J. L. & Wei, S. H. Origins of band-gap renormalization in degenerately doped semiconductors. Phys. Rev. B 78, 075211 (2008).

    ADS  Article  Google Scholar 

  52. 52.

    Ryan, J. C. & Reinecke, T. L. Band-gap renormalization of optically excited semiconductor quantum wells. Phys. Rev. B 47, 9615–9620 (1993).

    ADS  Article  Google Scholar 

  53. 53.

    Breusing, M., Ropers, C. & Elsaesser, T. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009).

    ADS  Article  Google Scholar 

  54. 54.

    Pogna, E. A. A. et al. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2. ACS Nano 10, 1182–1188 (2016).

    Article  Google Scholar 

  55. 55.

    Ulstrup, S. et al. Ultrafast band structure control of a two-dimensional heterostructure. ACS Nano 10, 6315–6322 (2016).

    Article  Google Scholar 

  56. 56.

    Gonzalez-Ballestero, C., Feist, J., Badía, E. G., Moreno, E. & Garcia-Vidal, F. J. Uncoupled dark states can inherit polaritonic properties. Phys. Rev. Lett. 117, 156402 (2016).

    ADS  Article  Google Scholar 

  57. 57.

    Hisamoto, D. et al. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 47, 2320–2325 (2000).

    ADS  Article  Google Scholar 

  58. 58.

    Bostwick, A. et al. Observation of plasmarons in quasi-freestanding doped graphene. Science 328, 999–1002 (2010).

    ADS  Article  Google Scholar 

  59. 59.

    Weisskopf, V. & Wigner, E. Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie. Z. Phys. 63, 54–73 (1930).

    ADS  MATH  Article  Google Scholar 

  60. 60.

    Knöll, L., Scheel, S. & Welsch, D.-G. in Coherence and Statistics of Photons and Atoms Ch. 7.3 (Wiley, 2001).

  61. 61.

    Chew, W. Waves and Fields in Inhomogeneous Media (IEEE Press, 1995).

  62. 62.

    Wasey, J. A. E. & Barnes, W. L. Efficiency of spontaneous emission from planar microcavities. J. Mod. Opt. 47, 725–741 (2000).

    ADS  Article  Google Scholar 

  63. 63.

    Lin, X. et al. Tailoring the energy distribution and loss of 2D plasmons. N. J. Phys. 18, 105007 (2016).

    Article  Google Scholar 

  64. 64.

    Gonçalves, P. A. D. & Peres, N. M. R. An Introduction to Graphene Plasmonics (World Scientific, 2016).

Download references

Acknowledgements

We thank D. Podolsky, N. Lindner and J.C. Song for their advice and for fruitful discussions regarding this paper. The research is supported by the Azrieli Faculty Fellowship, by the GIF Young Scientists’ Program and by an ERC Starter Grant.

Author information

Affiliations

Authors

Contributions

All authors made significant contributions to the manuscript.

Corresponding authors

Correspondence to Yaniv Kurman or Ido Kaminer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Nicholas Christakis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, methods, Figs. 1–6, Table 1 and references.

Supplementary Video 1

The relaxation dynamics, showing the different stages by means of the map of optical excitation P(q,ω)(t) and the initial excited state probability \(P_{\bf{k}_{\mathrm{i}}}\left( t \right)\).

Source data

Source Data Fig. 2

Source data for Fig. 2b. The coupling kernel for each frequency and wavenumber.

Source Data Fig. 3

Source data for Fig. 3. a The time-dependent initial state population probability. b The optical excitations’ occupation probability.

Source Data Fig. 4

Source data for Fig. 4. a The energy shift as a function of the initial momentum. b The tunable bandgap renormalization. c The shift in the photon absorption spectrum. d The highly expected nearfield emission spectra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kurman, Y., Kaminer, I. Tunable bandgap renormalization by nonlocal ultra-strong coupling in nanophotonics. Nat. Phys. (2020). https://doi.org/10.1038/s41567-020-0890-0

Download citation