Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Probing molecular environment through photoemission delays

Abstract

Attosecond chronoscopy has revealed small but measurable delays in photoionization, characterized by the ejection of an electron on absorption of a single photon. Ionization-delay measurements in atomic targets provide a wealth of information about the timing of the photoelectric effect, resonances, electron correlations and transport. However, extending this approach to molecules presents challenges, such as identifying the correct ionization channels and the effect of the anisotropic molecular landscape on the measured delays. Here, we measure ionization delays from ethyl iodide around a giant dipole resonance. By using the theoretical value for the iodine atom as a reference, we disentangle the contribution from the functional ethyl group, which is responsible for the characteristic chemical reactivity of a molecule. We find a substantial additional delay caused by the presence of a functional group, which encodes the effect of the molecular potential on the departing electron. Such information is inaccessible to the conventional approach of measuring photoionization cross-sections. The results establish ionization-delay measurements as a valuable tool in investigating the electronic properties of molecules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Photoemission delays around the giant 4d resonance in ethyl iodide.
Fig. 2: Ethyl iodide and neon streaking measurements.
Fig. 3: Streaking and EWS photoemission delays.
Fig. 4: Comparison of the first step in the ionization process and molecular influence on photoemission delay.

Data availability

The data represented in Figs. 1c, 2d,e, 3 and 4e are available as Source Data. All other data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Article  Google Scholar 

  2. 2.

    Wigner, E. P. Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98, 145–147 (1955).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    ADS  Article  Google Scholar 

  4. 4.

    Ossiander, M. et al. Attosecond correlation dynamics. Nat. Phys. 13, 280–285 (2016).

    Article  Google Scholar 

  5. 5.

    Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    Seiffert, L. et al. Attosecond chronoscopy of electron scattering in dielectric nanoparticles. Nat. Phys. 13, 766–770 (2017).

    Article  Google Scholar 

  7. 7.

    Huppert, M., Jordan, I., Baykusheva, D., von Conta, A. & Wörner, H. J. Attosecond delays in molecular photoionization. Phys. Rev. Lett. 117, 093001 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Isinger, M. et al. Photoionization in the time and frequency domain. Science 358, 893–896 (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    Tao, Z. et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353, 62–67 (2016).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Vos, J. et al. Orientation-dependent stereo Wigner time delay and electron localization in a small molecule. Science 360, 1326–1330 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Haessler, S. et al. Phase-resolved attosecond near-threshold photoionization of molecular nitrogen. Phys. Rev. A 80, 011404(R) (2009).

    ADS  Article  Google Scholar 

  13. 13.

    Dahlström, J. M., L’Huillier, A. & Maquet, A. Introduction to attosecond delays in photoionization. J. Phys. B 45, 183001 (2012).

    Article  Google Scholar 

  14. 14.

    Pazourek, R., Nagele, S. & Burgdörfer, J. Attosecond chronoscopy of photoemission. Rev. Mod. Phys. 87, 765–802 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Kamalov, A., Wang, A. L., Bucksbaum, P. H., Haxton, D. J. & Cryan, J. P. Electron correlation effects in attosecond photoionization of CO2. Preprint at http://arXiv.org/1906.10728 (2019).

  16. 16.

    Connerade, J. P. et al. in Giant Resonances in Atoms Molecules and Solids (eds Connerade, J. P., Esteva, J. M. & Karnatak, R. C.) 3–23 (Nato Science Series Vol. 151, Springer, 1987).

  17. 17.

    Amusia, M. Y., Cherepkov, N. A., Chernysheva, L. V. & Manson, S. T. Photoionization of atomic iodine and its ions. Phys. Rev. A 61, 020701(R) (2000).

    ADS  Article  Google Scholar 

  18. 18.

    Katsumi, K., Shunji, K., Yohji, A., Hiroshi, M. & Saburo, N. Photoelectron spectra and orbital structures of higher alkyl chlorides, bromides, and iodides. Bull. Chem. Soc. Jpn 46, 373–380 (1973).

    Article  Google Scholar 

  19. 19.

    Sewell, K. G. Photoionization cross section of neon. Phys. Rev. 138, A418–A421 (1965).

    ADS  Article  Google Scholar 

  20. 20.

    Eland, J. H. D. et al. Dissociation of multiply charged ICN by Coulomb explosion. J. Chem. Phys. 145, 074303 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Schnorr, K. XUV Pump–Probe Experiments on Diatomic Molecules: Tracing the Dynamics of Electron Rearrangement and Interatomic Coulombic Decay (Springer International, 2015).

  22. 22.

    Lawson, C. L. & Hanson, R. J. Solving Least Squares Problems (Society for Industrial and Applied Mathematics, 1995).

  23. 23.

    Nahon, L., Svensson, A. & Morin, P. Experimental study of the 4d ionization continuum in atomic iodine by photoelectron and photoion spectroscopy. Phys. Rev. A 43, 2328–2337 (1991).

    ADS  Article  Google Scholar 

  24. 24.

    Jain, A., Gaumnitz, T., Bray, A., Kheifets, A. & Wörner, H. J. Photoionization delays in xenon using single-shot referencing in the collinear back-focusing geometry. Opt. Exp. 43, 4510–4513 (2018).

    ADS  Google Scholar 

  25. 25.

    Zimmermann, T., Ortmann, L., Hofmann, C., Rost, J. M. & Landsman, A. S. Attosecond streaking delays in multi-electron systems. Preprint at http://arXiv.org/1804.09583 (2018).

  26. 26.

    Ossiander, M. et al. Absolute timing of the photoelectric effect. Nature 561, 374–377 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    Nagele, S. et al. Time-resolved photoemission by attosecond streaking: extraction of time information. J. Phys. B 44, 081001 (2011).

    ADS  Article  Google Scholar 

  28. 28.

    Pazourek, R., Feist, J., Nagele, S. & Burgdörfer, J. Attosecond streaking of correlated two-electron transitions in helium. Phys. Rev. Lett. 108, 163001 (2012).

    ADS  Article  Google Scholar 

  29. 29.

    Pazourek, R., Nagele, S. & Burgdörfer, J. Time-resolved photoemission on the attosecond scale: opportunities and challenges. Faraday Disc. 163, 353–376 (2013).

    ADS  Article  Google Scholar 

  30. 30.

    Baykusheva, D. & Wörner, H. J. Theory of attosecond delays in molecular photoionization. J. Chem. Phys. 146, 124306 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Pi, L.-W. & Landsman, A. Attosecond time delay in photoionization of noble-gas and halogen atoms. Appl. Sci. 8, 322 (2018).

    Article  Google Scholar 

  32. 32.

    Maia, M. & Himadri, C. Attosecond time delays in the valence photoionization of xenon and iodine at energies degenerate with core emissions. J. Phys. Conf. Ser. 875, 022015 (2017).

    Article  Google Scholar 

  33. 33.

    Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  Google Scholar 

  34. 34.

    Comes, F. J., Nielsen, U. & Schwarz, W. H. E. Inner electron excitation of iodine in the gaseous and solid phase. J. Chem. Phys. 58, 2230–2237 (1973).

    ADS  Article  Google Scholar 

  35. 35.

    Lindle, D. W. et al. Inner-shell photoemission from the iodine atom in CH3I. Phys. Rev. A 30, 239–244 (1984).

    ADS  Article  Google Scholar 

  36. 36.

    Schötz, J. et al. Phase-matching mechanism for high-harmonic generation in the overdriven regime driven by few-cycle laser pulses. Preprint at https://arxiv.org/abs/1912.07918 (2019).

  37. 37.

    Rojas, R. Neural Networks: A Systematic Introduction (Springer, 1996).

  38. 38.

    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

    MathSciNet  MATH  Google Scholar 

  39. 39.

    Hartmann, N. et al. Attosecond time–energy structure of X-ray free-electron laser pulses. Nat. Photon. 12, 215–220 (2018).

    ADS  Article  Google Scholar 

  40. 40.

    Patchkovskii, S., Zhao, Z., Brabec, T. & Villeneuve, D. M. High harmonic generation and molecular orbital tomography in multielectron systems: beyond the single active electron approximation. Phys. Rev. Lett. 97, 123003 (2006).

    ADS  Article  Google Scholar 

  41. 41.

    Schmidt, M. W. et al. General atomic and molecular electronic structure system. J. Comp. Chem. 14, 1347–1363 (1993).

    Article  Google Scholar 

  42. 42.

    Miyoshi, E., Sakai, Y., Tanaka, K. & Masamura, M. Relativistic dsp-model core potentials for main group elements in the fourth, fifth and sixth row and their applications. J. Mol. Struct. THEOCHEM 451, 73–79 (1998).

    Article  Google Scholar 

  43. 43.

    Sekiya, M., Noro, T., Osanai, Y. & Koga, T. Contracted polarization functions for the atoms Ca, Ga–Kr, Sr, and In–Xe. Theor. Chem. Acc. 106, 297–300 (2001).

    Article  Google Scholar 

  44. 44.

    Schultz, T. & Vrakking, M. Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy (Wiley-VCH, 2014).

  45. 45.

    Lucchese, R. R. & McKoy, V. Studies of differential and total photoionization cross sections of carbon dioxide. Phys. Rev. A 26, 1406–1418 (1982).

    ADS  Article  Google Scholar 

  46. 46.

    Natalense, A. P. P. & Lucchese, R. R. Cross section and asymmetry parameter calculation for sulfur 1s photoionization of SF6. J. Chem. Phys. 111, 5344–5348 (1999).

    ADS  Article  Google Scholar 

  47. 47.

    Gianturco, F. A., Lucchese, R. R. & Sanna, N. Calculation of low‐energy elastic cross sections for electron‐CF4 scattering. J. Chem. Phys. 100, 6464–6471 (1994).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge fruitful discussions with and support from F. Krausz. We are grateful for support from the King Saud University in the framework of the MPQ-KSU-LMU collaboration, and from the Researchers Supporting Project number RSP-2019/152. S.B. acknowledges support from the MULTIPLY fellowship program under the Marie Skłodowska-Curie COFUND Action and the Alexander von Humboldt Foundation. B.F. and J.S. acknowledge support from the Max Planck Society via the IMPRS-APS. M.F.K. is grateful for support from the Max Planck Society and the German Research Foundation via KL-1439/11-1.

Author information

Affiliations

Authors

Contributions

S.B., B.F. and L.O. contributed equally to this work. S.B., B.F., J.S., W.S., H.A.M., I.L., A.M.K., N.G.K., A.F.A., M.A., A.M.A. and M.F.K. conducted the experiments. S.B. and B.F. did the data analysis. G.H. worked on the ML code and extracted streaking traces. L.O., T.Z. and A.S.L. did the CWP calculations. L.P. performed the TDLDA simulations. D.B. and H.J.W. did the QST calculations. S.B., B.F., L.O., T.Z., D.B., H.J.W., A.S.L. and M.F.K. wrote the manuscript, which was reviewed by all the authors.

Corresponding authors

Correspondence to Alexandra S. Landsman or Matthias F. Kling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Renate Pazourek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Examples of streaking spectrograms.

(a)–(d), and (e)–(h) are measured streaking spectrograms for 80 eV and 93 eV XUV photon energy, respectively.

Extended Data Fig. 2 Retrieval procedure of streaking delays.

In (a) and (b) the spectral amplitude and phase of the streaking traces, retrieved from the neon 2p and iodine 4d emission, respectively, for the case of 93 eV XUV central energy, are displayed in dependence of the angular frequency ω of the NIR laser field. Spectral intensities below the threshold of 0.1Imax(ω) (that is spectral amplitude threshold of \({\mathrm{A}}(\omega ) \le \sqrt {0.1} {\mathrm{A}}_{{\mathrm{max}}}\left( \omega \right)\)) are considered as noise level, for which the spectral phase ϕ(ω) is blanked. The Fourier filter, which confines the respected angular frequency range to the NIR laser spectrum, is displayed as black dash-dotted line. In (c) the streaking phase delay Δts(ω), green solid line, calculated using Eq. 1 as described in the main text, is shown together with the filtered spectral amplitude of the neon streaking trace. The latter is used as weighting factor to calculate the weighted mean value Δts. Here, the streaking phase delay is determined for the frequency region for which the amplitude is above the threshold.

Extended Data Fig. 3 Quality of Gaussian fitting in GF analysis.

Independent Gaussian fitting for Ne and ethyl iodide peaks, used in GF analysis at 80 eV XUV photon energy.

Extended Data Fig. 4 Relative streaking delays derived from Gaussian fitting analysis.

(a) and (b) Relative streaking delays, retrieved from Gaussian fitting analysis for results from measurements at 80 eV and 93 eV, respectively, as a function of NIR intensity calculated from the amplitude of the corresponding streaking curves. Error bars indicate the variation in relative streaking phase delay in individual measurements. This figure is complementary to Figs. 2(d) and (e) in the main text, which represent the results from machine learning analysis.

Extended Data Fig. 5 Photoelectron spectra for XUV and NIR irradiation, and only XUV irradiation.

The shaded data represents the spectrum for XUV and NIR irradiation together. The black dashed line represents the spectrum for XUV irradiation only. By subtracting this from the combined XUV+NIR data set, the NIR contribution (red line) can be estimated, and is found to mainly originate from ATI electrons at low energies.

Source data

Source Data Fig. 1

Cross-section data in Fig. 1c.

Source Data Fig. 2

Streaking delay from individual measurements at 80 eV and 93 eV in Fig. 2d and 2e, respectively.

Source Data Fig. 3

Energy distribution of streaking delay and EWS delay in Fig. 3a and 3b, respectively.

Source Data Fig. 4

Angular distribution of streaking delay for different molecules in Fig. 4e.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Förg, B., Ortmann, L. et al. Probing molecular environment through photoemission delays. Nat. Phys. 16, 778–783 (2020). https://doi.org/10.1038/s41567-020-0887-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing