Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Particle physics at accelerators in the United States and Asia

An Author Correction to this article was published on 21 April 2020

This article has been updated


Particle physics experiments in the United States and Asia have greatly contributed to the understanding of elementary particles and their interactions. With the recent discovery of the Higgs boson at CERN, interest in the development of next-generation colliders has been rekindled. A linear electron–positron collider in Japan and a circular collider in China have been proposed for precision studies of the Higgs boson. In addition to the Higgs programme, new accelerator-based long-baseline neutrino mega-facilities are being built in the United States and Japan. Here, we outline the present status of key particle physics programmes at accelerators, and future plans in the United States and Asia that largely complement approaches being explored in the European Strategy for Particle Physics Update. We encourage the pursuit of this global approach, reaching beyond regional boundaries for optimized development and operations of major accelerator facilities worldwide, to ensure an active and productive future of the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic of LBNF/DUNE.


Fig. 2: Dominant Higgs production cross sections.
Fig. 3: Superconducting radio-frequency cavity.


Fig. 4: Artist’s rendering of the International Linear Collider.

Rey.Hori / KEK

Change history

  • 21 April 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012).

    ADS  Article  Google Scholar 

  2. 2.

    CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    ATLAS Collaboration. Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at √s = 13 TeV collected with the ATLAS experiment. Phys. Rev. D 101, 012002 (2020).

  4. 4.

    CMS Collaboration. Combined measurements of Higgs boson couplings in proton-proton collisions at √s=13 TeV. Eur. Phys. J. C 79, 421 (2019).

  5. 5.

    Cepeda, M. et al. Higgs physics at the HL-LHC and HE-LHC. Preprint at (2019).

  6. 6.

    Behnke, T. et al. The International Linear Collider technical design report - volume 1: executive summary. Preprint at (2013).

  7. 7.

    Evans, L. & Michizono, S. The International Linear Collider machine staging report 2017. Preprint at (2017).

  8. 8.

    Michizono, S. The International Linear Collider. Nat. Rev. Phys. 1, 244–245 (2019).

    Article  Google Scholar 

  9. 9.

    CLIC and CLICdp collaborations. Updated Baseline for a Staged Compact Linear Collider (CERN, 2016);

  10. 10.

    Benedikt, M. & Zimmerman, F. The physics and technology of the Future Circular Collider. Nat. Rev. Phys. 1, 238–240 (2019).

  11. 11.

    CEPC Study Group. CEPC conceptual design report: volume 1 — accelerator. Preprint at (2018).

  12. 12.

    Danby, G. et al. Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos. Phys. Rev. Lett. 9, 36–44 (1962).

    ADS  Article  Google Scholar 

  13. 13.

    Bloom, E. D. et al. High Energy inelastic e-p scattering at 6° and 10°. Phys. Rev. Lett. 23, 930–934 (1969).

    ADS  Article  Google Scholar 

  14. 14.

    Breidenbach, M. et al. Observed behavior of highly inelastic electron–proton scattering. Phys. Rev. Lett. 23, 935–939 (1969).

    ADS  Article  Google Scholar 

  15. 15.

    Augustin, J.-E. et al. Discovery of a narrow resonance in e +e annihilation. Phys. Rev. Lett. 33, 1406–1408 (1974).

    ADS  Article  Google Scholar 

  16. 16.

    Aubert, J. J. et al. Experimental Observation of a Heavy Particle J. Phys. Rev. Lett. 33, 1404–1406 (1974).

    ADS  Article  Google Scholar 

  17. 17.

    Perl, M. L. et al. Evidence for anomalous lepton production in e +e annihilation. Phys. Rev. Lett. 35, 1489–1492 (1975).

    ADS  Article  Google Scholar 

  18. 18.

    Perl, M. L. Evidence for, and properties of, the new charged heavy lepton. In Thanh Van, T. (ed.). Proc. XII Rencontres de Moriond. 75–97 (1977).

  19. 19.

    Herb, S. W. et al. Observation of a dimuon resonance at 9.5 GeV in 400-GeV proton-nucleus collisions. Phys. Rev. Lett. 39, 252–255 (1977).

    ADS  Article  Google Scholar 

  20. 20.

    CDF Collaboration.Observation of top quark production in \(\bar{p}p\) collisions with the Collider Detector at Fermilab. Phys. Rev. Lett. 74, 2626–2631 (1995).

    Article  Google Scholar 

  21. 21.

    D0 Collaboration. Observation of the top quark. Phys. Rev. Lett. 74, 2632–2637 (1995).

    Article  Google Scholar 

  22. 22.

    DONUT Collaboration. Observation of tau neutrino interactions. Phys. Lett. B. 504, 218–224 (2000).

    ADS  Google Scholar 

  23. 23.

    Luo, Q. & Xu, D. Progress on preliminary conceptual study of HIEPA, a super tau-charm factory in China. In Proc. 9th International Particle Accelerator Conference 422–424 (2018).

  24. 24.

    Albrecht, J. et al. Future Prospects for exploring present day anomalies in flavor physics measurements with Belle II and LHCb. Preprint at (2018).

  25. 25.

    Super-Kamiokande Collaboration. Evidence for Oscillation of Atmospheric Neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998).

    Article  Google Scholar 

  26. 26.

    Ahmad, Q. R. et al. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002).

    ADS  Article  Google Scholar 

  27. 27.

    Daya Bay Collaboration. New measurement of θ 13 via neutron capture on hydrogen at Daya Bay. Phys. Rev. D 93, 072011 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Pac, M. Y. Recent Results from RENO. Preprint at (2018).

  29. 29.

    Holzbauer, J. L. The Muon g-2 Experiment Overview and Status. Preprint at (2017).

  30. 30.

    Muon g-2 Collaboration. Final Report of the E821 muon anomalous magnetic moment measurement at BNL. Phys. Rev. D. 73, 072003 (2006).

    Article  Google Scholar 

  31. 31.

    Yuan, C.-Z. The XYZ states revisited. Int. J. Mod. Phys. A 33, 1830018 (2018).

    ADS  Article  Google Scholar 

  32. 32.

    DUNE Collaboration. The DUNE far detector interim design report volume 1: physics, technology & strategies. Preprint at (2018).

  33. 33.

    Bambade, P. et al. The International Linear Collider: a global project. Preprint at (2019).

  34. 34.

    Bhat, P. C. & Taylor, G. N. Report of the International Committee for Future Accelerators. In Proc. 39th Int. Conference on High Energy Physics (2018).

  35. 35.

    Bhat, P. C. & Rubinstein, R. The International Committee for Future Accelerators (ICFA): history and the future. Rev. Accel. Sci. Technol. 10, 311–320 (2019).

    Article  Google Scholar 

  36. 36.

    KEK International Working Group. Recommendations on ILC Project Implementation (KEK, 2019);

  37. 37.

    Grassellino, A. et al. Unprecedented quality factors at accelerating gradients up to 45 MVm–1 in niobium superconducting resonators via low temperature nitrogen infusion. Supercond. Sci. Technol. 30, 094004 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Grassellino, A. et al. Accelerating fields up to 49 MV/m in TESLA-shape superconducting RF niobium cavities via 75C vacuum bake. Preprint at (2018).

  39. 39.

    Delahaye, J. P. et al. Muon Colliders. Preprint at (2019).

  40. 40.

    MICE Collaboration. Demonstration of cooling by the Muon Ionization Cooling Experiment. Nature 578, 53–59 (2020).

    ADS  Article  Google Scholar 

  41. 41.

    Alesini, D. et al. Positron driven muon source for a muon collider. Preprint at (2019).

  42. 42.

    Neuffer, D. & Shiltsev, V. On the feasibility of a pulsed 14 TeV muon collider in the LHC tunnel. J. Instrum. 13, T10003 (2018).

    Article  Google Scholar 

  43. 43.

    Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).

    ADS  Article  Google Scholar 

  44. 44.

    Joshi, C. Review of beam driven plasma wakefield accelerators. AIP Conf. Proc. 737, 3–10 (2004).

    ADS  Article  Google Scholar 

  45. 45.

    England, R. et al. Dielectric laser accelerators. Rev. Mod. Phys. 86, 1337–1389 (2014).

    ADS  Article  Google Scholar 

  46. 46.

    Gonsalves, A. J. et al. Petwatt laser guiding and electron beam acceleration to 8 gev in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).

    ADS  Article  Google Scholar 

  47. 47.

    Adli, E. et al. Acceleration of electrons in the plasma wakefield of a proton bunch. Nature 561, 363–367 (2018).

    ADS  Article  Google Scholar 

  48. 48.

    Cros, B. & Muggli, P. ALLEGRO input for the 2020 update of the European Strategy for Particle Physics: comprehensive overview. Preprint at (2019).

  49. 49.

    European Strategy for Particle Physics Preparatory Group. Physics briefing book. Preprint at (2019).

  50. 50.

    HEPAP Subcommittee Collaboration. Building for Discovery: Strategic Plan for U.S. Particle Physics in the Global Context (2014);

  51. 51.

    Bernstein, R. H. et al. (eds) Planning the Future of U.S. Particle Physics: Report of the 2013 Community Summer Study of the APS Division of Particles and Fields (2013);

  52. 52.

    Ishitsuka, M. et al. Final Report of the Committee on Future Projects in High Energy Physics, (JAHEP, 2017);

  53. 53.

    ICFA Statement on the ILC Project (The International Committee for Future Accelerators, 2020);

Download references


P.C.B. is supported by Fermi National Accelerator Laboratory (FNAL/Fermilab), which is managed by Fermi Research Alliance, LLC (FRA), under the contract number DE-AC02-07CH11359 with the US Department of Energy. G.N.T. is supported by the Australian Research Council and the University of Melbourne.

Author information



Corresponding author

Correspondence to Pushpalatha C. Bhat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhat, P.C., Taylor, G.N. Particle physics at accelerators in the United States and Asia. Nat. Phys. 16, 380–385 (2020).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing